Answer:
Energy in the campfire originates from the potential chemical energy of the wood, before it is burnt to warm and give light around the campfire.
Explanation:
For a camp fire, the energy input is in the form of the potential chemical energy, stored up in the firewood used to fuel the flame.
The energy output is in the form of heat energy that the campfire radiates all around, light energy given off from the flame, and a little bit of sound energy, heard in the cracking of the firewood as they burn in the flame.
chemical energy ⇒ heat energy + light energy + sound energy
Answer:
Thermal energy
Explanation:
When gasoline, coal, batteries and logs are all burn they transform chemical energy to thermal energy.
The chemical energy is the energy held between chemical chains and bonds within an atom.
- When they combust, they release thermal energy
- Chemical energy is a potential energy.
- The thermal energy is a kinetic energy
- It increase the average motion of the particles in the medium
- The breaking bond when produces heat which is a form of thermal energy.
Explanation:
Polarity is defined as the development of partial charges on the atoms of a molecule. In a water molecule, there are hydrogen and oxygen atoms.
Due to the difference in electronegativity of both hydrogen and oxygen atom there is development of partial positive charge on hydrogen atom and a partial negative charge on oxygen atom.
So, when bond between hydrogen and oxygen will break down then it will form hydrogen ions (
) and oxygen ions (
).
Ion-dipole interactions are defined as the interactions that occur when an ion interacts with the dipole of a molecule.
When an electron is added to a neutral atom to convert it into a negative ion then the amount of change taking place in its energy is known as electron affinity.
So, oxygen atom has an affinity towards cations and hydrogen atom has an affinity for anions.
Thus, we can conclude that following interactions and processes contribute to the dissolution of ionic compounds in water:
1. Affinity of oxygen towards cations
2. Ion–dipole interactions
4. Hydration
6. Affinity of hydrogen towards anions
Answer:
84.11 g/mol
Explanation:
A metal from group 2A will form the cation M²⁺, and the ion carbonate is CO₃²⁻, so the metal carbonate must be: MCO₃, and the reaction:
MCO₃(s) → MO(s) + CO₂(g)
For the stoichiometry of the reaction, 1 mol of MCO₃(s) will produce 1 mol of CO₂. Using the ideal gas law, it's possible to calculate the number of moles of CO₂:
PV = nRT , where P is the pressure, V is the volume(0.285 L), R is the gas constant (62.36 mmHg*L/mol*K), n is the number of moles, and T is the temperature (25 + 273 = 298 K).
69.8*0.285 = n*62.36*298
18583.28n = 19.893
n = 0.00107 mol
So, the number of moles of the metal carbonate is 0.00107. The molar mass is the mass divided by the number of moles:
0.0900/0.00107 = 84.11 g/mol