Answer:
D
Explanation:
Remember that magnets only attract at different poles. If both poles are the same, they repel
A. Controlled experiment hope this helps
Answer:
8.08 x 10^-5 m
Explanation:
A = 2 mm^2 = 2 x 10^-6 m^2
Total number of electrons, N = 9.4 x 10^18
time, t = 3 s
n = 5.8 x 10^28 electrons/ m^3
Current, i = Q / t = N x e / t = (9.4 x 10^18 x 1.6 x 10^-19) / 3 = 0.5 A
Let vd be the drift velocity.
i = n e A vd
0.5 = 5.8 x 10^28 x 1.6 x 10^-19 x 2 x 10^-6 x vd
vd = 2.7 x 10^-5 m/s
Distance traveled by the electrons = velocity x time
= vd x t = 2.7 x 10^-5 x 3 = 8.08 x 10^-5 m
Answer:
if this surface has a higher index than in the medium where the light travels, the reflected wave has a phase change of 180º
Explanation:
When a ray of light falls on a surface if this surface has a higher index than in the medium where the light travels, the reflected wave has a phase change of 180º this can be explained by Newton's third law, the light when arriving pushes the atoms of the medium that is more dense, and these atoms respond with a force of equal magnitude, but in the opposite direction.
When the fractional index is lower than that of the medium where the reflacted beam travels, notice a change in phase.
Also, when light penetrates the medium, it modifies its wavelength
λ = λ₀ / n
We take these two aspects into account, the condition for contributory interference is
d sin θ = (m + 1/2) λ
for destructive interference we have
d sin θ = m λ
in general this phenomenon is observed at 90º
2 d = (m +1/2) λ° / n
2nd = (m + ½) λ₀
Answer:
4.4×10⁻⁷ Coulomb
Explanation:
V = Voltage = 5.8 kV
d = Potential distance = 2.8 mm = 0.0028 m
A = Area = 0.3×0.08 = 0.024 m²
ε₀ = permittivity constant in a Vacuum= 8.85×10⁻¹² F/m

Magnitude of charge transferred between a carpet and a shoe is 4.4×10⁻⁷ Coulomb.