Answer:
Kinetic Enerrgy = 12744000 J or 12.744 MJ
Explanation:
Given Data:
Mass of fragment = m =1770 kg ;
Estimated speed = v = 120 m/sec ;
Solution:
As we know that
Kinetic energy = K.E = (1/2)mv²
By putting the values, we get
K.E = 0.5*1770*120²
K.E = 12744000 J
or
K.E = 12.744 MJ
So, the kinetic energy of lead-lined vault when it landed was 12.744MJ approximately.
Answer:
When the string moves, it creates a very small change in the distance to the next point, th
Explanation:
When the string moves, it creates a very small change in the distance to the next point, this generates a restoring force that tends to push the string back, this small disturbance propagates along the string and is what creates the pulse.
This is similar to what happens when a spring is stretched and a restoring force is generated shaved by the law of shortening.
F = k Dx
Answer:1.81
(a) Explanation:the turn ratio= input voltage÷output voltage.
400÷220=1.81.
Don't know how to solve b part...
Answer: he did travel 15 meters.
Explanation:
We have the data:
Acceleration = a = 1.2 m/s^2
Time lapes = 3 seconds
Initial speed = 3.2 m/s.
Then we start writing the acceleration:
a(t) = 1.2 m/s^2
now for the velocity, we integrate over time:
v(t) = (1.2 m/s^2)*t + v0
with v0 = 3.2 m/s
v(t) = (1.2 m/s^2)*t + 3.2 m/s
For the position, we integrate again.
p(t) = (1/2)*(1.2 m/s^2)*t^2 + 3.2m/s*t + p0
Because we want to know the displacementin those 3 seconds ( p(3s) - p(0s)) we can use p0 = 0m
Then the displacement at t = 3s will be equal to p(3s).
p(3s) = (1/2)*(1.2 m/s^2)*(3s)^2 + 3.2m/s*3s = 15m
That equation is Newton's universal law of gravitation. ... Any two masses exert equal-and-opposite gravitational forces on each other. If we drop a ball, the Earth exerts a gravitational force on the ball, but the ball exerts a gravitational force of the same magnitude (and in the opposite direction) on the Earth.