1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lina20 [59]
3 years ago
9

An ideal spring of negligible mass is 11.00cm long when nothing is attached to it. When you hang a 3.05-kg weight from it, you m

easure its length to be 12.40cm .
If you wanted to store 10.0J of potential energy in this spring, what would be its total length? Assume that it continues to obey Hooke's law.
Express your answer numerically. If there is more than one answer, enter each answer, separated by a comma.
=
Physics
1 answer:
mart [117]3 years ago
7 0

Answer

0.2067m or 0.2067m

Explanation;

Let lenght of spring= Lo= 11cm=0.110m

It is hang from a mass of

3.05-kg having a length of L1= 12.40cm= 0.124m

Force required to stretch the spring= Fkx

But weight of mass mg= kx then K= Mg/x

K= 3.05-kg× 9.8)/(0.124m-.110m)

K=2135N

But potential Energy U= 0.5Kx

X=√ 2U/k

√(2*10)/2135

X=0.0967m

The required new length= L2= L0 ±x

=

.110m ± 0.0967m

X= 0.2067m or 0.2067m hence the total lenghth

You might be interested in
Having landed on a newly discovered planet, an astronaut sets up a simple pendulum of length 1.38 m and finds that it makes 441
Tasya [4]
The period of a simple pendulum is given by:
T=2 \pi  \sqrt{ \frac{L}{g} }
where L is the pendulum length, and g is the gravitational acceleration of the planet. Re-arranging the formula, we get:
g= \frac{4 \pi^2}{T^2}L (1)

We already know the length of the pendulum, L=1.38 m, however we need to find its period of oscillation.

We know it makes N=441 oscillations in t=1090 s, therefore its frequency is
f= \frac{N}{t}= \frac{441}{1090 s}=0.40 Hz
And its period is the reciprocal of its frequency:
T= \frac{1}{f}= \frac{1}{0.40 Hz}=2.47 s

So now we can use eq.(1) to find the gravitational acceleration of the planet:
g= \frac{4 \pi^2}{T^2}L =  \frac{4 \pi^2}{(2.47 s)^2} (1.38 m) =8.92 m/s^2
3 0
3 years ago
A car starts from rest and accelerates uniformly over a time of 18 seconds for a distance of 390 m. Determine the acceleration o
Sergeeva-Olga [200]

Answer:

a=2.4\ m/s^2

Explanation:

Given that,

The initial speed of a car, u = 0

Time, t = 18 s

Distance, d = 390 m

We need to find the acceleration of the car. Let it is a. Using the second equation of motion to find it.

d=ut+\dfrac{1}{2}at^2

or

d=\dfrac{1}{2}at^2\\\\a=\dfrac{2d}{t^2}\\\\a=\dfrac{2\times 390}{(18)^2}\\\\a=2.4\ m/s^2

So, the acceleration of the car is 2.4\ m/s^2.

5 0
3 years ago
How much thermal energy is needed to melt 1.25 kg of water at its melting point? Use Q = masslaten heat of fusion.
Amanda [17]

Answer:

Latent heatnof fusion = 417.5 J

Explanation:

Specific latent heat of fusion of water is 334kJ.kg-1.

The heat required to melt water when it's ice I called latent heat because there is no temperature change, the only change observed is change in physical structure.

The amount of heat required to change 1 kg of solid to its liquid state (at its melting point) at atmospheric pressure is called Latent heat of Fusion.

Latent heat = ML

Latent heat= 1.25 kg * 334kJ.kg-1

Latent heat = 1.25*334 *(J/kg)*kg

Latent heat = 417.5 J

8 0
3 years ago
While riding in a hot air balloon, which is steadily decreasing at a speed of 1.14 m/s, you accidentally drop your cell phone. H
Ilia_Sergeevich [38]

Answer:

The distance covered by the balloon is 47.52 meters.

Explanation:

Given that,

Initial speed of the balloon, u = 1.14 m/

Let us assumed we need to find the distance covered by the balloon after t = 3 second. Let d is the distance covered by the balloon. It can be given by :

d=ut+\dfrac{1}{2}at^2

Here, a = g

d=ut+\dfrac{1}{2}gt^2

d=1.14\times 3+\dfrac{1}{2}\times 9.8\times (3)^2

d = 47.52 meters

So, the distance covered by the balloon is 47.52 meters. Hence, this is the required solution.

4 0
2 years ago
A projectile rolls off a cliff with a velocity of 40 m/s. The cliff is 60 meters high.
masya89 [10]

Answer:

1) t = 3.45 s, 2)  x = 138 m, 3) v_{y} = -33.81 m /s, 4) v = 52.37 m / s ,

5) θ = -40.2º

Explanation:

This is a projectile exercise, as they indicate that the projectile rolls down the cliff, it goes with a horizontal speed when leaving the cliff, therefore the speed is v₀ₓ = 40 m / s.

1) Let's calculate the time that Taardaen reaches the bottom, we place the reference system at the bottom of the cliff

      y = y₀ + v_{oy} t - ½ g t²

When leaving the cliff the speed is horizontal  v_{oy}= 0 and at the bottom of the cliff y = 0

      0 = y₀ - ½ g t2

      t = √ 2y₀ / g

      t = √ (2 60 / 9.8)

      t = 3.45 s

2) The horizontal distance traveled

     x = v₀ₓ t

     x = 40 3.45

     x = 138 m

3) The vertical velocity at the point of impact

     v_{y} = I go - g t

     v_{y} = 0 - 9.8 3.45

     v_{y} = -33.81 m /s

the negative sign indicates that the speed is down

4) the resulting velocity at this point

   v = √ (vₓ² + v_{y}²)

   v = √ (40² + 33.8²)

   v = 52.37 m / s

5) angle of impact

    tan θ = v_{y} / vx

    θ = tan⁻¹ v_{y} / vx

    θ = tan⁻¹ (-33.81 / 40)

    θ = -40.2º

6) sin (-40.2) = -0.6455

7) tan (-40.2) = -0.845

8) when the projectile falls down the cliff, the horizontal speed remains constant and the vertical speed increases, therefore the resulting speed has a direction given by the angle that is measured clockwise from the x axis

6 0
2 years ago
Other questions:
  • Help? Will give thanks if right (thank you)
    6·1 answer
  • Two trucks have the same velocity but different masses. Truck 1 has a mass of 200kg and truck 2 has a mass of 500kg . Which truc
    6·1 answer
  • 1. Which of the following best describes the movement of an object at rest if no outside forces act on it?
    6·2 answers
  • You are skiing in ... preparation for a competition. being a dedicated physics student, you happen to have a scale with you. you
    15·1 answer
  • How can Newton's third law describe the forces affecting a rocket as it
    5·2 answers
  • Defination coulomb's law.
    7·1 answer
  • How does a free-body diagram tell you about the net force on an object?
    8·2 answers
  • A frog has a pulmocutaneous artery and vein which compares to the human pulmonary artery and vein. What two organs do these bloo
    11·1 answer
  • A washer is swung in a circle on a string as shown below. If the string
    14·1 answer
  • What process builds organic molecules such as sucrose by taking water away?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!