Answer:
1. 75N
2. 67,983 J (=67.98 kJ)
Explanation:
1. Work = Force x Distance
we are given that Work = 1,500J and Distance = 20m
hence,
Work = Force x Distance
1,500 = Force x 20
Force = 1,500 ÷ 20 = 75N
2. Potential Energy, PE = mass x gravity x change in height
we are given that mass = 165 kg and change in height = 42m
assuming that gravity, g = 9.81 m/s²
Potential Energy, PE = mass x gravity x change in height
Potential Energy, PE = 165 x 9.81 x 42 = 67,983 J (=67.98 kJ)
If only 1 option is correct then it is (D)
All the others can also make one component negative, all depends how u measured the angle.
all the best
Answer:
about 4 km
Explanation:
15 minutes is a quarter of an hour, so you divide 16km by 4 to get your answer
Well 200 doubled or (x2)=400 if that’s what it means
Answer:
D
Explanation:
- The rate of the Diels-Alder is orders of magnitude faster if there is an electron-withdrawing group on the dienophile. For example, replacing a hydrogen on ethene with the electron-withdrawing group CN results in about a 10^5 increase in the reaction rate.
- Other common electron withdrawing functional groups that will accelerate the Diels Alder reaction of dienophiles include aldehydes, ketones, and esters.
- In short, any functional group conjugated with the pi bond which can act as a pi acceptor will accelerate a Diels-Alder reaction with a typical diene.
- See attachment for graphical explanation.