Answer:
12 atm
Explanation:
First, let us convert Celcius into Kelvin: 28.0 °C = 301.15 K and 129.0 °C = 402.15 K
For this question we must employ the Combined Gas Law:
, where
is the initial pressure and
is the new pressure.
We know that intitially, P=9 atm, V=30 L, and T=301.15K. From our problem, only temperature and pressure changes, while the number of moles, volume and the gas constant, R, stay the same, so they are irrelevant.
Thus, the filled out Combined Gas Law would be:
=
, where the volume, moles of gas, and R are cancelled out.
We can manipulate this equation to derive the new pressure. We find that
9atm≈0.74885
.
This means that
≈9/0.74885≈12 atm
Answer:
Element 2
Explanation:
If we look at the model stated for element 1, it is clear that element 1 must be a noble gas. It has eight electrons in its outermost shell this implies that it has already attained a complete octet of electrons and is reluctant towards chemical reaction.
The second element belongs to group 16 since it has six electrons on its outermost shell. It is certainly more reactive than element 1 which is a noble gas.
The change in temperature (ΔT) : 56.14 ° C
<h3>Further explanation</h3>
Given
Cereal energy = 235,000 J
mass of water = 1000 g
Required
the change in temperature (ΔT)
Solution
Heat can be formulated :
Q = m . c . ΔT
c = specific heat for water = 4.186 J / gram ° C
235000 = 1000 . 4.186 . ΔT
![\tt \Delta T=\dfrac{235000}{1000\times 4.186}=56.14^oC](https://tex.z-dn.net/?f=%5Ctt%20%5CDelta%20T%3D%5Cdfrac%7B235000%7D%7B1000%5Ctimes%204.186%7D%3D56.14%5EoC)