Answer:
θ = 36.2º
Explanation:
When light passes through a polarizer it becomes polarized and if it then passes through a second polarizer, it must comply with Malus's law
I = I₀ cos² tea
The non-polarized light between the first polarized of this leaves half the intensity, with vertical polarization
I₁ = I₀ / 2
I₁ = 845/2
I₁ = 422.5 W / m²
In this case, the incident light in the second polarizer has an intensity of I₁ = 422.5 W / m² and the light that passes through the polarizer has a value of
I = 275 W / m
²
Cos² θ = I / I₁
Cos θ = √ I / I₁
Cos θ = √ (275 / 422.5)
Cos θ = 0.80678
θ = cos⁻¹ 0.80678
θ = 36.2º
This is the angle between the two polarizers
2 is B. 3 is D. 4 is C. I think 5 is A. 6 is A. 7 is D. I think you are all correct. Good Luck!
Length of the pipe = 0.39 m
Third harmonic frequency = 1400 Hz
For the third harmonic:
Wavelength = 
The center of the open pipe will host a node and the nearest anti - node from the center will be at the 0.25 × wavelength
Distance from center = 0.25 × wavelength
Distance = 
Plugging the value of the length of the pipe (L) = 0.39 m = 39 cm
Distance = 
Distance from the center to the nearest anti - node = 6.5 cm
Hence, the nearest distance to the anti - node from the center = 6.5 cm
So, option C is correct.
Answer:
twice
Explanation:
From magnification = height of image / height of object
Distance of image/ distance of object = magnification
If the distance and height of the object represents the initial light distance and the exposed surface respectively.
And similarly the distance and height of the image represents the final light distance and the exposed surface respectively.
Hence the new image exposure would be twice as large.
If we use the formula our point of investigation is Height of image,
H2= D2/D1× H1
H2 = 2D2/D1 × H1
H2 = 2H1
The characteristics of high energy wave length are:
- High Frequencies
- Short wave length
And in term of color, it will be located on the red spectrum.