Answer:
The speed of the plank relative to the ice is:

Explanation:
Here we can use momentum conservation. Do not forget it is relative to the ice.
(1)
Where:
- m(g) is the mass of the girl
- m(p) is the mass of the plank
- v(g) is the speed of the girl
- v(p) is the speed of the plank
Now, as we have relative velocities, we have:
(2)
v(g/b) is the speed of the girl relative to the plank
Solving the system of equations (1) and (2)



I hope it helps you!
Answer:
KE₂ = 6000 J
Explanation:
Given that
Potential energy at top U₁= 7000 J
Potential energy at bottom U₂= 1000 J
The kinetic energy at top ,KE₁= 0 J
Lets take kinetic energy at bottom level = KE₂
Now from energy conservation
U₁+ KE₁= U₂+ KE₂
Now by putting the values
U₁+ KE₁= U₂+ KE₂
7000+ 0 = 1000+ KE₂
KE₂ = 7000 - 1000 J
KE₂ = 6000 J
Therefore the kinetic energy at bottom is 6000 J.
Complete question is:
A 1200 kg car reaches the top of a 100 m high hill at A with a speed vA. What is the value of vA that will allow the car to coast in neutral so as to just reach the top of the 150 m high hill at B with vB = 0 m/s. Neglect friction.
Answer:
(V_A) = 31.32 m/s
Explanation:
We are given;
car's mass, m = 1200 kg
h_A = 100 m
h_B = 150 m
v_B = 0 m/s
From law of conservation of energy,
the distance from point A to B is;
h = 150m - 100 m = 50 m
From Newton's equations of motion;
v² = u² + 2gh
Thus;
(V_B)² = (V_A)² + (-2gh)
(negative next to g because it's going against gravity)
Thus;
(V_B)² = (V_A)² - (2gh)
Plugging in the relevant values;
0² = (V_A)² - 2(9.81 × 50)
(V_A) = √981
(V_A) = 31.32 m/s
Answer:
W = 3.1 N
Explanation:
moments about any convenient point will sum to zero.
I choose summing about the knife edge mark and will assume the ruler of weight W is of uniform construction.
I will assume the ruler weight makes a positive moment
W[55 - 50) - 0.040(9.8)[ 95 - 55] = 0
5W = 15.68
W = 3.136
The acceleration of gravity on Earth is 9.8 m/s² .
The speed of a falling object keeps increasing smoothly,
in such a way that the speed is always 9.8 m/s faster than
it was one second earlier.
If you 'drop' the penny, then it starts out with zero speed.
If you also start the clock at the same instant, then
After 1.10 sec, Speed = (1.10 x 9.8) = 10.78 meters/sec
After 1.85 sec, Speed = (1.85 x 9.8) = 18.13 meters/sec
But you want this second one given in a different unit of speed.
OK then:
= (18.13 meter/sec) x (3,600 sec/hr) x (1 mile/1609.344 meter)
= (18.13 x 3,600 / 1609.344) (mile/hr) = 40.56 mph (rounded)
We did notice that in an apparent effort to make the question
sound more erudite and sophisticated, you decided to phrase
it in terms of 'velocity'. We can answer it in those terms, if we
ASSUME that there is no wind, and the penny therefore doesn't
acquire any horizontal component of motion on its way down.
With that assumption in force, we are able to state unequivocally
and without fear of contradiction that each 'speed' described above ...
with the word 'downward' appended to it ... does become a 'velocity'.