Answer:
41.74 m/s
Explanation:
The energy used to draw the bowstring = the kinetic energy of the arrow.
Fd = 1/2mv²................................ Equation 1
Where F = force, d = distance move string, m = mass of the arrow, v = speed of the arrow.
make v the subject of the equation
v = √(2Fd/m)...................... Equation 2
Given: F = 201 N, m = 0.3 kg, d = 1.3 m.
Substitute into equation 2
v = √(2×201×1.3/0.3)
v = √(1742)
v = 41.74 m/s.
Hence the arrow leave the bow with a speed of 41.74 m/s
Answer: the constant angular velocity of the arms is 86.1883 rad/sec
Explanation:
First we calculate the linear velocity of the single sprinkler;
Area of the nozzle = π/4 × d²
given that d = 8mm = 8 × 10⁻³
Area of the nozzle = π/4 × (8 × 10⁻³)²
A = 5.024 × 10⁻⁵ m²
Now total discharge is dived into 4 jets so discharge for single jet will be;
Q_single = Q / n = 0.006 / 4 = 1.5 × 10⁻³ m³/sec
So using continuity equation ;
Q_single = A × V_single
V_single = Q_single/A
we substitute
V_single = (1.5 × 10⁻³) / (5.024 × 10⁻⁵)
V_single = 29.8566 m/s
Now resolving the forces as shown in the second image,
Vt = Vcos30°
Vt = 29.8566 × cos30°
Vt = 25.8565 m/s
Finally we calculate the angular velocity;
Vt = rω
ω_single = Vt / r
from the given diagram, radius is 300mm = 0.3m
so we substitute
ω_single = 25.8565 / 0.3
ω_single = 86.1883 rad/sec
Therefore the constant angular velocity of the arms is 86.1883 rad/sec
And because of gravity it falls back down to the earth.
Answer:
Flow rate 2.34 m3/s
Diameter 0.754 m
Explanation:
Assuming steady flow, the volume flow rate along the pipe will always be constant, and equals to the product of flow speed and cross-section area.
The area at the well head is

So the volume flow rate along the pipe is

We can use the similar logic to find the cross-section area at the refinery

The radius of the pipe at the refinery is:



So the diameter is twice the radius = 0.38*2 = 0.754m
The answer is the last option.