Since velocity is a speed and a direction, there are only two ways for you to accelerate: change your speed or change your direction—or change both. If you're not changing your speed and you're not changing your direction, then you simply cannot be accelerating—no matter how fast you're going.
Answer:
Strike-slip fault
Explanation:
Transform boundaries play the role of connecting the other plate boundary segments.
When the plates are rubbed against each other, they result in enormous amount of stresses which leads to the breaking of the part of a rock causing earthquakes. Places of occurrence of these breaks are termed as faults.
Strike slip faults results from compression which takes place horizontally, but but in this the rock displacement releases energy and takes place in a horizontal direction which is parallel to the force of compression.
Answer:
Explanation:
First, It's important to remember F = ma, and in this problem m = 13.3 kg
This can be reduced to a simple system of equations problem. Now if they are both going the same way then we add them, while if they are going the opposite way we subtract them. So let's call them F1 and F2, with F1 arger than F2. Now, When we add them together F1+F2 = (.723 m/s^2)*13.3kg and then when we subtract them, and have the larger one pushing toward the east, let's call F1 the larger one, F1-F2 = (.493 m/s^2)*13.3kg.
Can you solve this system of equations seeing them like this, or do you need more help?
Let's start with the concept of momentum. What is it? Linear momentum in physics is mathematically written as a product of mass and velocity of an object. Now let us suppose a body of mass m is moving in an inertial frame of reference with velocity v. Consider the fact that no external force is acting on the system. The momentum of this body is given by mv, where m is the mass and v is its velocity. In case of simple real world problems not delving into the realms of relativity, mass is a conserved quantity and it cannot be zero. Hence the velocity of the body must be zero and hence the momentum.
However, photons are considered to have a rest mass zero.
However note the point carefully "rest mass". A body in motion cannot have mass to be zero.
<em>-</em><em> </em><em>BRAINLIEST</em><em> answerer</em><em> ❤️</em>
Psychology on Egenuity Oct 5th 2018 says answer is C