Hello there! With the values of density and volume, you would be able to find the object's mass.
Density is found by dividing the mass by the volume, so you could place in the values of the density and the volume to get the mass.
For example:
500 = mass/10
The 500 being density and 100 being volume. You would use simple math rules and multiply 10 by 500, and you'd get 5000, therefore using the density and volume values and giving you the mass.
I hope I could help you and have a great day!
Answer:
The answer to your question is: SiCl₄
Explanation:
Data
amount of Si 1.71 g
amount of Cl 8.63 g
MW Si = 28 g
MW Cl = 35.5
Process (rule of three)
For Si For Cl
28 g of Si ------------------ 1 mol 35.5 g of Cl --------------- 1 mol
1.71g of Si --------------- x 8.63 g of Cl -------------- x
x = 1.71 x 1 / 28 = 0.06 mol x = 8.63 x 1 / 35.5 = 0.24 mol
Now, divide both results by the lowest of them.
Si = 0.06 mol / 0.06 = 1 molecule of Si Cl = 0.24 / 0.06 = 4 molecules of Cl
Finally
Si₁ Cl₄ or SiCl₄
Fe3O4 + 4H2 = 3Fe + 4H2O
Fe3O4 + 4H2SO4 = Fe2(SO4)3 + FeSO4 + 4H2O
Answer:
Random particle motion in liquids and gases is a difficult concept for in temperature, the particles move faster as they gain kinetic energy.
Explanation:
Answer:
his is an example of a first-year chemistry question where you must first convert two of the pressures to the units of the third and add them up, per Dalton’s law of additive pressures. There are three possible answers, one for each of the three pressure units.
1 atm = 760 torr …… torr and mm Hg are the same
1 atm = 101.3 kPa
Dalton’s law:
P(total) = P(O2) + P(N2) + P(CO2)
Explanation:
Gases will assume whatever pressure depending on the equation of state of the mixture (in this case) and the volume htey are contained in. That could be the ideal gas law and simple mixing law, If you are quoting the partial pressures which you call simply “the pressure” of each gas, and that these refer to their values in the present mixture, then yes, we would add them up. The pressures are low enough for the ideal gas law to apply provided the temperature is not extremely low as well .