Answer:
X-Positions: Y-Positions
x(0) = 0 y(0) = 0
x(2) = 120 m y(2) = 19.6 m
x(4) = 240 m y(4) = 78.4 m
x(6) = 360 m y(6) = 176.4 m
x(8) = 480 m y(8) = 313 m
x(10) = 600m y (10) = 490 m
Explanation:
X-Positions
- First, we choose to take the horizontal direction as our x-axis, and the positive x-axis as positive.
- After being thrown, in the horizontal direction, no external influence acts on the stone, so it will continue in the same direction at the same initial speed of 60. 0 m/s
- So, in order to know the horizontal position at any time t, we can apply the definition of average velocity, rearranging terms, as follows:

- It can be seen that after 2 s, the displacement will be 120 m, and each 2 seconds, as the speed is constant, the displacement will increase in the same 120 m each time.
Y-Positions
- We choose to take the vertical direction as our y-axis, taking the downward direction as our positive axis.
- As both axes are perpendicular each other, both movements are independent each other also, so, in the vertical direction, the stone starts from rest.
- At any moment, it is subject to the acceleration of gravity, g.
- As the acceleration is constant, we can find the vertical displacement (taking the height of the cliff as the initial reference level), using the following kinematic equation:

- Replacing by the values of t, we get the following vertical positions, from the height of the cliff as y = 0:
- y(2) = 2* 9.8 m/s2 = 19.6 m
- y(4) = 8* 9.8 m/s2 = 78.4 m
- y(6) = 18*9.8 m/s2 = 176.4 m
- y(8) = 32*9.8 m/s2 = 313.6 m
- y(10)= 50 * 9.8 m/s2 = 490.0 m
M = mass of the first sphere = 10 kg
m = mass of the second sphere = 8 kg
V = initial velocity of the first sphere before collision = 10 m/s
v = initial velocity of the second sphere before collision = 0 m/s
V' = final velocity of the first sphere after collision = ?
v' = final velocity of the second sphere after collision = 4 m/s
using conservation of momentum
M V + m v = M V' + m v'
(10) (10) + (8) (0) = (10) V' + (8) (4)
100 = (10) V' + 32
(10) V' = 68
V' = 6.8 m/s
Answer:
THE BOHR SHIFT ON THE OXYGEN-HEMOGLOBIN DISSOCIATION CURVE IS PRODUCED BY CHANGES IN THE CONCENTRATION OF CARBON IV OXIDE.
Explanation:
The oxygen-hemoglobin dissociation curve shows the relationship between the saturated hemoglobin concentration and oxygen. It shows how the blood hold on to and releases oxygen. The Bohr shift can occur as a result of changes in concentration of carbon iv oxide and other factors such as acidity or pH, 2,3-bisphosphoglycerate, exercise, also temperature of the body. These factors contributes to the right or left shift on the curve. Carbon iv oxide prevents the binding of oxygen to the hemoglobin. The is because hemoglobin has the same binding site for both oxygen and carbon iv oxide. Carbon iv oxide increase also leads to a change in the pH of the blood through the formation of bicarbonate ion. Bicarbonate ion formation causes reduced acidity and therefore lead a shift in the dissociation curve for more of the carbon iv oxide to be excreted as hemoglobin's affinity for oxygen reduces. And when the concentration of carbon iv oxide is low in the plasma, acidity increases and this provides more affinity for oxygen by the hemoglobin.
Well.....
Gravity from the sun pulls the planets torward it while inertia pulls it outward....but I guess that would be why it orbits sorry if this doesn't help but uh
1) 3 miles/Hour
The speed is defined as the distance covered divided by the time taken:

where
d = 1.5 mi is the distance
t = 0.5 h is the time taken
Substituting,

2) 1.34 m/s south
Velocity, instead, is a vector, so it has both a magnitude and a direction. We have:
is the displacement in meters
is the time taken in seconds
Substituting,

And the direction of the velocity is the same as the displacement, so it is south.