The fridge part can, just not the freezer, I think.
<u>Answer:</u> The temperature at which the food will cook is 219.14°C
<u>Explanation:</u>
To calculate the final temperature of the system, we use the equation given by Gay-Lussac Law. This law states that pressure of the gas is directly proportional to the temperature of the gas at constant pressure.
Mathematically,

where,
are the initial pressure and temperature of the gas.
are the final pressure and temperature of the gas.
We are given:

Putting values in above equation, we get:

Converting the temperature from kelvins to degree Celsius, by using the conversion factor:


Hence, the temperature at which the food will cook is 219.14°C
Answer:
6.66 s will it take for [AB] to reach 1/3 of its initial concentration 1.50 mol/L.
Explanation:
![Rate = k[AB]^2](https://tex.z-dn.net/?f=Rate%20%3D%20k%5BAB%5D%5E2)
The order of the reaction is 2.
Integrated rate law for second order kinetic is:
Where,
is the initial concentration = 1.50 mol/L
is the final concentration = 1/3 of initial concentration =
= 0.5 mol/L
Rate constant, k = 0.2 L/mol*s
Applying in the above equation as:-


<u>6.66 s will it take for [AB] to reach 1/3 of its initial concentration 1.50 mol/L.</u>
Answer:
Molality = 7.5 mol/kg
Explanation:
Given data:
Mass of NH₄Cl = 6.30 g
Mass of water = 15.7 g (15.7/1000 =0.016 kg)
Molality = ?
Solution:
Formula of molality:
Molality = Moles of solute / mass of solvent in gram
Now we will first calculate the number of moles of solute( NH₄Cl )
Number of moles = mass/ molar mass
Molar mass of NH₄Cl = 53.491 g/mol
Number of moles = 6.30 g/ 53.491 g/mol
Number of moles = 0.12 mol
Now we will calculate the molality.
Molality = Moles of solute / mass of solvent in gram
Molality = 0.12 mol / 0.016 kg
Molality = 7.5 m
or (m=mol/kg)
Molality = 7.5 mol/kg
Explanation:
Light intensity influences the manufacture of plant food, stem length, leaf color and flowering. Generally speaking, plants grown in low light tend to be spindly with light green leaves. A similar plant grown in very bright light tends to be shorter, better branches, and have larger, dark green leaves.