Answer:
The concentration of I at equilibrium = 3.3166×10⁻² M
Explanation:
For the equilibrium reaction,
I₂ (g) ⇄ 2I (g)
The expression for Kc for the reaction is:
![K_c=\frac {\left[I_{Equilibrium} \right]^2}{\left[I_2_{Equilibrium} \right]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%20%7B%5Cleft%5BI_%7BEquilibrium%7D%20%5Cright%5D%5E2%7D%7B%5Cleft%5BI_2_%7BEquilibrium%7D%20%5Cright%5D%7D)
Given:
= 0.10 M
Kc = 0.011
Applying in the above formula to find the equilibrium concentration of I as:
![0.011=\frac {\left[I_{Equilibrium} \right]^2}{0.10}](https://tex.z-dn.net/?f=0.011%3D%5Cfrac%20%7B%5Cleft%5BI_%7BEquilibrium%7D%20%5Cright%5D%5E2%7D%7B0.10%7D)
So,
![\left[I_{Equilibrium} \right]^2=0.011\times 0.10](https://tex.z-dn.net/?f=%5Cleft%5BI_%7BEquilibrium%7D%20%5Cright%5D%5E2%3D0.011%5Ctimes%200.10)
![\left[I_{Equilibrium} \right]^2=0.0011](https://tex.z-dn.net/?f=%5Cleft%5BI_%7BEquilibrium%7D%20%5Cright%5D%5E2%3D0.0011)
![\left[I_{Equilibrium} \right]=3.3166\times 10^{-2}\ M](https://tex.z-dn.net/?f=%5Cleft%5BI_%7BEquilibrium%7D%20%5Cright%5D%3D3.3166%5Ctimes%2010%5E%7B-2%7D%5C%20M)
<u>Thus, The concentration of I at equilibrium = 3.3166×10⁻² M</u>
Answer:
See explanation
Explanation:
The reaction between alcohol and acidified potassium dichromate is a redox reaction. This reaction can be used to detect a drunken driver.
Alcohols can be oxidized to aldehydes, ketones and carboxylic acids depending on the structure of the alcohol. Primary alcohols yield adehydes and carboxylic acids while secondary alcohols are oxidized to ketones.
The colour of the acidified potassium dichromate turns from orange to green when exposed to alcohols from the breath of a drunken driver.
Effect of Two-Step Homogenization on the Evolution of Al3Zr Dispersoids in Al-0.3Mg-0.4Si-0.2Zr Alloy Al3Zr nano-particles can be introduced in Al-Mg-Si 6xxx alloys to improve their elevated temperature behavior and recrystallization resistance. The effect of two-step homogenization treatments on
the precipitation of Al3Zr dispersoids in Al-0.3Mg-0.4Si-0.2Zr alloy was investigated and compared to
<h3>What is
Homogenization?</h3>
Any of a number of methods, including homogenization and homogenisation, are used to uniformly combine two liquids that are insoluble in one another. To do this, one of the liquids is changed into a state in which very minute particles are evenly dispersed across the other liquid. The process of homogenizing milk, in which the milk fat globules are equally distributed throughout the remaining milk and reduced in size, is a classic example. In order to create an emulsion, two immiscible liquids (i.e., liquids that are not soluble in all amounts one in another) must be homogenized (from "homogeneous"; Greek, homos, same + genos, kind)[2] (Mixture of two or more liquids that are generally immiscible).
To learn more about Homogenization from the given link:
brainly.com/question/18271118
#SPJ4
Answer:
it is because of Dark Matter
Dark Matter, component of the universe whose presence is discerned from its gravitational attraction rather than its luminosity. Dark matter makes up 30.1 percent of the matter-energy composition of the universe; the rest is dark energy (69.4 percent) and “ordinary” visible matter (0.5 percent).
Dark matter is composed of particles that do not absorb, reflect, or emit light, so they cannot be detected by observing electromagnetic radiation. Dark matter is material that cannot be seen directly.
Explanation:
Hope It helps
Have A Nice Day : )
Potassium is not found free in nature but is found in the form of potash. Potash is the ore of potassium and this ore is mined from deep down the earth or can sometimes be found on the surface. Potash was mostly formed as sea water receded and left deposits.
Potash is usually in the form of potassium salts such potassium chloride and potassium sulphate. The potash is mined then taken to the factory where it is crushed and purified by removing such impurities as clay.
The now purified potassium salts are subjected to a process called electrolysis where potassium metal is obtained from its salt.