Refer to the diagram shown below.
By definition momentum = mass * velocity.
Before throwing the ball:
The initial momentum is
P₁ = 0.
After throwing the ball:
Let u = the backward velocity of the quarterback.
The momentum is
P₂ = (0.43 kg)*(15 m/s) + (80 kg)*(- u m/s)
Conservation of momentum requires that
P₂ = P₁
6.45 - 80u = 0
u = 6.45/80 = 0.0806 m/s
Answer: 0.08 m/s backward
Answer:
Assuming that you meant the final velocity of 50 m/s was reached in 10 s, the answer would be 5 m/s^2.
Explanation:

So we update that with the values that we have.

then simplify that using algebra to solve for a and we get 5 m/s^2
The kinetic energy of the proton is 3.4 kev
1 kev = 1.602 × 10^-16 joules
therefore 3.4 kev is equivalent to;
3.4 × (1.602 ×10^-16)= 5.4468 × 10^-16 J
Kinetic energy is calculated by the formula 1/2mv² where m is the mass and v is the velocity.
Therefore V = √((2 × ( 5.4468×10^-16))/ (1.67 ×10^-27))
= 8.077 × 10^5 m/s