The Himalayan Mountains formed at a convergence plate boundary between the Eurasian plate and the Indian plate.
Answer:
It is possible by increasing the speed of the tennis ball by a factor of (Mass of the tennis ball)/(Mass of the basketball)
Explanation:
The momentum of a body = The bod's mass × The body's velocity
Therefore, the momentum of a given mass of an object, such as a tennis ball can be increased by increasing the velocity or speed of the object. Whereby the speed of the ball, v₁, is increased such that the momentum of the basketball and the tennis ball will be the same, is given by the following equation
Mass of the basketball × v₂ = Mass of the tennis ball × v₁
Therefore, v₁/v₂ = (Mass of the tennis ball)/(Mass of the basketball)
Energy to lift something =
(mass of the object) x (gravity) x (height of the lift).
BUT ...
This simple formula only works if you use the right units.
Mass . . . kilograms
Gravity . . . meters/second²
Height . . . meters
For this question . . .
Mass = 55 megagram = 5.5 x 10⁷ grams = 5.5 x 10⁴ kilograms
Gravity (on Earth) = 9.8 m/second²
Height = 500 cm = 5.0 meters
So we have ...
Energy = (5.5 x 10⁴ kilogram) x (9.8 m/s²) x (5 m)
= 2,696,925 joules .
That's quite a large amount of energy ... equivalent to
straining at the rate of 1 horsepower for almost exactly an
hour, or burning a 100 watt light bulb for about 7-1/2 hours.
The reason is the large mass that's being lifted.
On Earth, that much mass weighs about 61 tons.