Answer:
8.08 x 10^-5 m
Explanation:
A = 2 mm^2 = 2 x 10^-6 m^2
Total number of electrons, N = 9.4 x 10^18
time, t = 3 s
n = 5.8 x 10^28 electrons/ m^3
Current, i = Q / t = N x e / t = (9.4 x 10^18 x 1.6 x 10^-19) / 3 = 0.5 A
Let vd be the drift velocity.
i = n e A vd
0.5 = 5.8 x 10^28 x 1.6 x 10^-19 x 2 x 10^-6 x vd
vd = 2.7 x 10^-5 m/s
Distance traveled by the electrons = velocity x time
= vd x t = 2.7 x 10^-5 x 3 = 8.08 x 10^-5 m
Answer:
In Step 5, you will calculate H+/OH– ratios for more extreme pH solutions. Find the concentration of H+ ions to OH– ions listed in Table B of your Student Guide for a solution at a pH = 2. Then divide the H+ concentration by the OH– concentration. Record these concentrations and ratio in Table C.
What is the concentration of H+ ions at a pH = 2?
0.01 mol/L
What is the concentration of OH– ions at a pH = 2?
0.000000000001 mol/L
What is the ratio of H+ ions to OH– ions at a pH = 2?
10,000,000,000 : 1
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
I LITERALLY spent 40 MINUTES trying to figure out this question, so please, use my VERY CORRECT answers!
I hope this helps!
Answer: 3 m/s
Explanation:
We can solve the problem by using the law of conservation of momentum: during the collision between the two balls, the total momentum of the system before the collision and after the collision must be conserved:

The total momentum before the collision is given only by the cue ball, since the solid ball is initially at rest, therefore

So, the final total momentum will also be

And the total momentum after the collision is given only by the solid ball, since the cue ball is now at rest, therefore:

from which we find the velocity of the solid ball

The sensation of a frequency is commonly referred to as the pitch of a sound. A high pitch sound corresponds to a high frequency sound wave and a low pitch sound corresponds to a low frequency sound wave. ... That is, two sound waves sound good when played together if one sound has twice the frequency of the other.