Answer:
The forms of energy involved are
1. Kinetic energy
2. Potential energy
Explanation:
The system consists of a ball initially at rest. The ball is pulled down from its equilibrium position (this builds up its potential energy) and then released. The released ball oscillates due to a continuous transition between kinetic and potential energy.
Hi there!
To find the appropriate force needed to keep the block moving at a constant speed, we must use the dynamic friction force since the block would be in motion.
Recall:

The normal force of an object on an inclined plane is equivalent to the vertical component of its weight vector. However, the horizontal force applied contains a vertical component that contributes to this normal force.

We can plug in the known values to solve for one part of the normal force:
N = (1)(9.8)(cos30) + F(.5) = 8.49 + .5F
Now, we can plug this into the equation for the dynamic friction force:
Fd= (0.2)(8.49 + .5F) = 1.697 N + .1F
For a block to move with constant speed, the summation of forces must be equivalent to 0 N.
If a HORIZONTAL force is applied to the block, its horizontal component must be EQUIVALENT to the friction force. (∑F = 0 N). Thus:
Fcosθ = 1.697 + .1F
Solve for F:
Fcos(30) - .1F = 1.697
F(cos(30) - .1) = 1.697
F = 2.216 N
The system will experience a reaction with adding of the element hydrochloric acid (HCl). The equilibrium is shifted and the potential energy, where it will be absorbed by the energetic component of the product as sch the overall temperature reading will also decrease as the heat due to potential energy is absorbed and/or contained.
Answer:
Radiative transport
Explanation:
Radiative transportation takes place extensively in the core of the sun. It produces solar energy which are emitted outward from the core of the sun, and it comprises more than 70% of the sun's heat energy. At the core of the sun, the process of nuclear fusion takes where the hydrogen atoms combines with one another, and forms helium, and during this process, it releases a large amount of energy. The photons continuously interacts with the ions (or atoms) and releases this energy to the particles and the excited particles converts the excess amount of energy into another photon which are carried outward by the process of radiative transport.
Answer:
Option B. N2(g) + 3H2(g) → 2NH3(g)
Explanation:
When nitrogen react with hydrogen, they form a product as shown below:
N2+ H2 → NH3
We need to balance the equation. This is illustrated below:
There are 2 atoms of nitrogen on the left side and 1 atom on the right side. To balance it, put 2 in front of NH3 as shown below:
N2+ H2 → 2NH3
Now, There are a total of 6 atoms of Hydrogen on the right side and 2 atoms on the left side side. This can be balanced by putting 3 in front of H2 as shown below:
N2+ 3H2 → 2NH3
Now we see clearly that the equation is balanced as we have equal numbers of atoms of N and H on both sides of the equation