This is thermodynamics. When you increase the temperature of an object, the particles gain on kinethic energy ergo the move faster. When you decrease it, they slow down.
I believe the correct answer from the choices listed above is the first option. The compound that contains both ionic and covalent bonding is KOH or potassium hydroxide. It contains one covalent<span> (O-H) and one that is </span>ionic<span> (K-O). Hope this helps.</span>
Firstly, a balanced equation has to be written for the production of ammonia (NH₃) from hydrogen gas (H₂) and nitrogen gas (N₂):
N₂ + 3H₂ → 2NH₃
Now, the mole ratio of N₂ : NH₃ is 1 : 2 based on the coefficients of the balanced equation.
If the moles of N₂ = 2.5 moles
then the moles of NH₃ produced = 2.5 mol × 2
= 5 mol
Thus, the moles of ammonia produced when 2.5 mol of nitrogen gas is combined with excess hydrogen gas is 5 mol.
Answer:
See explanation and image attached
Explanation:
My aim is to convert 1-bromobutane to butanal. The first step is to react the 1-bromobutane substrate with water. This reaction occurs by SN2 mechanism to yield 1-butanol. Hence reagent A is water.
1-butanol is now reacted with an oxidizing agent such as acidified K2Cr2O7 (reagent B) to yield butanal. Note that primary alkanols are oxidized to alkanals.
These sequence of reactions are shown in the image attached.