1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sergij07 [2.7K]
3 years ago
14

BRAINLIEST AND 5 STARS. HELP ASAP.

Physics
1 answer:
liberstina [14]3 years ago
4 0
Wavelength = wavespeed / frequency

0.5 meter = speed / 200 Hz
speed = 0.5m * 200 Hz
= 100 m/s
Solved
You might be interested in
Can someone help on this I'm really stuck
castortr0y [4]
Here, "Wavelength is same for both waves" it is the distance between two crests or two consecutive troughs, so, it is constant for both of them, you can easily figure it out.

In short, Your Answer would be "Wavelength"

Hope this helps!
5 0
3 years ago
In a Young's double-slit experiment the separation distance y between the second-order bright fringe and the central bright frin
Natasha2012 [34]

Answer:

y = 0.0233 m

Explanation:

In a Young's Double Slit Experiment the distance between two consecutive bright fringes is given by the formula:

Δx = λL/d

where,

Δx = distance between fringes

λ = wavelength of light

L = Distance between screen and slits

d = Slit Separation

Now, for initial case:

λ = 425 nm = 4.25  x 10⁻⁷ m

y = 2Δx = 0.0177 m => Δx = 8.85 x 10⁻³ m

Therefore,

8.85 x 10⁻³ m = (4.25 x 10⁻⁷ m)L/d

L/d = (8.85 x 10⁻³ m)/(4.25 x 10⁻⁷ m)

L/d = 2.08 x 10⁴

using this for λ = 560 nm = 5.6 x 10⁻⁷ m:

Δx = (5.6 x 10⁻⁷ m)(2.08 x 10⁴)

Δx = 0.0116 m

and,

y = 2Δx

y = (2)(0.0116 m)

<u>y = 0.0233 m</u>

3 0
3 years ago
A 175-kg roller coaster car starts from rest at the top of an 18.0-m hill and rolls down the hill, then up a second hill that ha
Anni [7]

Answer:

The work done by non-conservative forces on the car from the top of the first hill to the top of the second hill is 6574.75 joules.

Explanation:

By Principle of Energy Conservation and Work-Energy Theorem we present the equations that describe the situation of the roller coaster car on each top of the hill. Let consider that bottom has a height of zero meters.

From top of the first hill to the bottom

m\cdot g \cdot h_{1} = \frac{1}{2}\cdot m\cdot v_{1}^{2} +W_{1, loss} (1)

From the bottom to the top of the second hill

\frac{1}{2}\cdot m\cdot v_{1}^{2} = m\cdot g \cdot h_{2} + \frac{1}{2}\cdot m \cdot v_{2}^{2}+W_{2,loss} (2)

Where:

m - Mass of the roller coaster car, in kilograms.

v_{1} - Speed of the roller coaster car at the bottom between the two hills, in meters per second.

g - Gravitational acceleration, in meters per square second.

h_{1} - Height of the first top of the hill with respect to the bottom, in meters.

W_{1, loss} - Work done by non-conservative forces on the car between the top of the first hill and the bottom, in joules.

v_{2} - Speed of the roller coaster car at the top of the second hill, in meters per seconds.

h_{2} - Height of the second top of the hill with respect to the bottom, in meters.

W_{2, loss} - Work done by non-conservative forces on the car bewteen the bottom between the two hills and the top of the second hill, in joules.

By using (1) and (2), we reduce the system of equation into a sole expression:

m\cdot g\cdot h_{1} = m\cdot g\cdot h_{2} + \frac{1}{2}\cdot m \cdot v_{2}^{2} + W_{loss} (3)

Where W_{loss} is the work done by non-conservative forces on the car from the top of the first hill to the top of the second hill, in joules.

If we know that m = 175\,kg, g = 9.807\,\frac{m}{s^{2}}, h_{1} = 18\,m, h_{2} = 8\,m and v_{2} = 11\,\frac{m}{s}, then the work done by non-conservative force is:

W_{loss} = m\cdot\left[ g\cdot \left(h_{1}-h_{2}\right)-\frac{1}{2}\cdot v_{2}^{2} \right]

W_{loss} = 6574.75\,J

The work done by non-conservative forces on the car from the top of the first hill to the top of the second hill is 6574.75 joules.

8 0
2 years ago
Which one of these exercises gets your heart pumping? *
Nookie1986 [14]

Answer:

swimming

Explanation:

5 0
2 years ago
Read 2 more answers
A van moves with a constant speed of 20 miles per hour. How far can it travel in 3 1/2 hours
koban [17]
I think the answer would be 70
5 0
3 years ago
Other questions:
  • Urgent please physic
    13·1 answer
  • Doctor prescribed drug which is 500mg for patient change this unit into gram
    6·1 answer
  • KINDLYY FASTT A uniform metre rule of mass 100 g is pivoted at the 60 cm mark. At what point on the meter rule should a mass of
    5·1 answer
  • On a cold winters da,y,If you left a drink setting outside,it could freeze.Explain why in a complete sentence
    10·1 answer
  • What is the best definition of luminous?
    5·2 answers
  • If a pulley system with an ideal mechanical advantage of 2,000,000 is used in lifting a 2,000 lb. car, how far would the car mov
    11·1 answer
  • the maximum displacement of an oscillatory motion is A=0.49m. determine the position x at which the kinetic energy of the partic
    7·1 answer
  • What is artificial insemination as used in animal production
    8·1 answer
  • A ventilating fan is operated by 0.5hp electric motor. How much work in joules can the fan do in 3 hours? (I need the answer asa
    6·1 answer
  • The graph shows the federal budget from 1980 to 2010. In which period did the federal budget show the greatest deficit?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!