Answer:
2
Step-by-step explanation:
68+48=116
116÷16=7.24 (wrong)
116÷12=9.7 (wrong)
116÷4=29 (lowest even)
116÷2=58 (highest even)
If I'm wrong, let me know
Answer:
<h2>Solution: Since, the prime factors of 226 are 2, 113. Therefore, the product of prime factors = 2 × 113 = 226.</h2>
Step-by-step explanation:
<h2>(。♡‿♡。)______________________</h2><h2>
<em><u>PLEASE</u></em><em><u> MARK</u></em><em><u> ME</u></em><em><u> BRAINLIEST</u></em><em><u> AND</u></em><em><u> FOLLOW</u></em><em><u> M</u></em><em><u> </u></em><em><u> </u></em><em><u>E </u></em><em><u>AND</u></em><em><u> SOUL</u></em><em><u> DARLING</u></em><em><u> TEJASWINI</u></em><em><u> SINHA</u></em><em><u> HERE</u></em><em><u> ❤️</u></em></h2>
You can't cheat you can't ask someone for help and ask for answers ;-;
Answer: 0.935
Explanation:
Let S = z-score that has a probability of 0.175 to the right.
In terms of normal distribution, the expression "probability to the right" means the probability of having a z-score of more than a particular z-score, which is Z in our definition of variable Z. In terms of equation:
P(z ≥ S) = 0.175 (1)
Equation (1) is solvable using a normal distribution calculator (like the online calculator in this link: http://stattrek.com/online-calculator/normal.aspx). However, the calculator of this type most likely provides the value of P(z ≤ Z), the probability to the left of S.
Nevertheless, we can use the following equation:
P(z ≤ S) + P(z ≥ S) = 1
⇔ P(z ≤ S) = 1 - P(z ≥ S) (2)
Now using equations (1) and (2):
P(z ≤ S) = 1 - P(z ≥ S)
P(z ≤ S) = 1 - 0.175
P(z ≤ S) = 0.825
Using a normal distribution calculator (like in this link: http://stattrek.com/online-calculator/normal.aspx),
P(z ≤ S) = 0.825
⇔ S = 0.935
Hence, the z-score of 0.935 has a probability 0.175 to the right.