In both cases less energy is required
But comparetively Mg require more energy than K
Let's see the electron configuration of Both
- [Mg]=1s²2s²2p⁶3s²=[Ne]3s²
- [K]=1s²2s²2p⁶3s²3p⁶4s¹=[Ar]4s¹
K has only one valence electron so very less ionization enthalpy so less energy required
Mg has 2 so more IE hence more energy required
Answer:
The value of the average convection coefficient is 20 W/Km².
Explanation:
Given that,
For first object,
Characteristic length = 0.5 m
Surface temperature = 400 K
Atmospheric temperature = 300 K
Velocity = 25 m/s
Air velocity = 5 m/s
Characteristic length of second object = 2.5 m
We have same shape and density of both objects so the reynold number will be same,
We need to calculate the value of the average convection coefficient
Using formula of reynold number for both objects



Here, 


Put the value into the formula


Hence, The value of the average convection coefficient is 20 W/Km².
Answer:
Explanation:
Electric forces exist among stationary electric charges; both electric and magnetic forces exist among moving electric charges. ... The magnetic force between two moving charges may be described as the effect exerted upon either charge by a magnetic field created by the other.
Answer:
event s
Explanation:
the cow gets oxygen from the tree and proceeds to respirate.
Explanation:
The area between the speed-time graph f a body and time axis measures the distance travelled by the body