I believe the correct answer is the second option. Planting of trees on sloped surfaces is a method of conservation that utilizes the roots of plants. Planting trees on such areas would prevent hazards and maintain the soil formation future since the roots would hold the soil together preventing or minimizing any soil erosion.
Answer:
a = 2 [m/s^2]
Explanation:
To solve this problem we must use the expressions of kinematics, we must bear in mind that when a body is at rest its velocity is zero.

where:
Vf = final velocity = 0
Vi = initial velocity = 60 [m/s]
a = desacceleration [m/s^2]
t = time = 30 [s]
Note: the negative sign of the above equation means that the car is slowing down, i.e. its speed decreases.
0 = 60 - (a*30)
a = 2 [m/s^2]
Answer:
The buoy will move upwards and downwards and well as left and right
Explanation:
As the wind is storing so had the capability to move the buoy in all directions as it is a light object despite being anchored down
PLEASE GIVE BRAINLIEST AND THANKS :-)
-- <u><em>Current is measured in amps.</em></u> (You can use any symbol you want to represent current, but the most common one is " I ", not "Δ".)
-- <u><em>The relationship between current, voltage, and resistance is mathematically defined by Ohm's Law. </em></u>
-- <u><em>Current is the flow of electrons through a circuit.</em></u>
-- (Ohm's Law is NOT mathematically represented by the equation V=I/R.) <u><em>It should be V = I · R</em></u> .
(When solving for Resistance in a circuit and both voltage and current are known values, the equation I =V*R is not true, and not the way to solve it.) <u><em>If the resistance is what you're looking for, then the equation to use is </em></u><u><em>R = V / I</em></u><u><em> . </em></u>
<em>-- </em><u><em>If the voltage in a circuit is increased, the current will also increase.</em></u>
Answer:
T = 74°C
Explanation:
Given Mw = mass of water = 330g, Ma = mass of aluminium = 840g
Cw = 4.2gJ/g°C = specific heat capacity of water and Ca = 0.9J/g°C = specific heat capacity of aluminium
Initial temperature of water = 100°C.
Initial temperature of aluminium = 29°C
When the boiling water is poured into the aluminum pan, heat is exchanged and after a short time the water and aluminum pan both come to thermal equilibrium at a common temperature T.
Heat lost by water equal to the heat gained by aluminium pan.
Mw × Cw×(100 –T) = Ma × Ca × (T–29)
330×4.2×(100– T) = 890×0.9×(T–29)
1386(100 – T) = 801(T –29)
1386/801(100 – T) = T – 29
1.73(100 – T) = T – 29
173 –1.73T = T –29
173+29 = T + 1.73T
202 = 2.73T
T = 202/2.73
T = 74°C