Answer:
h= 46.66 m
Explanation:
Given that
Initial speed of the car ,u = 110 km/h
We know that
1 km/h= 0.277 m/s
u= 30.55 m/s
lets height gain by car is h.
The final speed of the car will be zero at height h.
v²=u²- 2 g h
v= 0 m/s
0²=30.55²- 2 x 10 x h ( g = 10 m/s²)
h= 46.66 m
The total momentum of the players after collision is 130 kgm/s.
The given parameters:
- <em>Initial momentum of the returner, </em>
<em> = 0 kgm/s</em> - <em>The initial momentum of the diving player, </em>
<em> = 130 kgm/s</em>
The total momentum of the players after collision is determined by applying the principle of conservation of linear momentum as follows;

Thus, the total momentum of the players after collision is 130 kgm/s.
Learn more about conservation of linear momentum here: brainly.com/question/7538238
Answer:
The initial acceleration of the 59g particle is
Explanation:
Newton's second laws relates acceleration (a), net force(F) and mass (m) in the next way:
(1)
We already know the mass of the particle so we should find the electric force on it to use on (1), the magnitude of the electric force between two charged objects by Columb's law is:

with q1 and q2 the charge of the particles, r the distance between them and k the constant
. So:

Using that value on (1) and solving for a

For a parallel circuit with two resistors, the total resistance is calculated from the expression:
1/R = 1/R1 + 1/R2
We are given the total resistance, R, which is 20 ohms and R2 which is 75 ohms. We calculate R1 as follows:
1/20 = 1/R1 + 1/75
1/R1 = 11/300
R1 = 27.27 ohms
Ignoring the air resistance it will take about 3 seconds for the object to reach the ground.We know that the acceleration due to gravity is 10m/s2.
We also know that the final velocity is 30 m/s while the initial velocity is 0 m/s
we can use the formulae for acceleration to calculate the time taken/
(final - initial velocity)/timetaken=10
(30-0)/timetaken=10
timetaken =30/10=3 seconds