Answer:
4 m/s
Explanation:
Momentum is conserved.
m₁ v₁ + m₂ v₂ = (m₁ + m₂) v
(50)(5) + (20)(1.5) = (50 + 20) v
v = 4
The final velocity is 4 m/s.
Infrared waves are used in heat lamps and other heat sensing devices. Infrared waves or commonly known as Infrared radiations (IR) is the type of electromagnetic radiation we encounter most in our everyday life. Heat lamps are electrical devices which emit infrared radiation.
Since this is a distance/time graph, the speed at any time is the slope
of the part of the graph that's directly over that time on the x-axis.
At time t1 = 2.0 s
That's in the middle of the first segment of the graph,
that extends from zero to 3 seconds.
Its slope is 7/3 . v1 = 7/3 m/s .
At time t2 = 4.0 s
That's in the middle of the horizontal part of the graph
that runs from 3 to 6 seconds.
Its slope is zero.
v2 = zero .
At time t3 = 13 s.
That's in the middle of the part of the graph that's sloping down,
between 11 and 16 seconds.
Its slope is -3/5 . v3 = -0.6 m/s .
Answer:
Part a)

Part b)

Explanation:
As we know that torque is defined as the product of force and its perpendicular distance from reference point
so here we have

now we have


Part b)
Now we know the conversion as
1 meter = 3.28 foot
1 N = 0.225 Lb force
now we have



<span>Gravitational force is affected by: a. mass c. distance b. weight d. both a and c
Mass.
</span>When an object is above the Earth's surface it hasgravitational potential<span> energy (GPE). The amount of GPE an object has depends on its mass and its height above the Earth's surface</span><span>
</span>