The answer would be 2.63. Your welcome. This has been changed to the correct answer.
Answer:
9.3m/s
Explanation:
Based on the law of conservation of momentum
Sum of momentum before collision = sum of momentum after collision
m1u1 +m2u2 = m1v1+m2v2
m1 = 8kg
u1 = 15.4m/s
m2 = 10kg
u2 = 0m/s(at rest)
v1 = 3.9m/s
Required
v2.
Substitute
8(15.4)+10(0) = 8(3.9)+10v2
123.2=31.2+10v2
123.2-31.2 = 10v2
92 = 10v2
v2 = 92/10
v2 = 9.2m/s
Hence the velocity of the 10.0 kg object after the collision is 9.2m/s
To solve this problem it is necessary to apply the principles of conservation of Energy in order to obtain the final work done.
The electric field in terms of the Force can be expressed as

Where,
F = Force
E= Electric Field
q = Charge
Puesto que el trabajo realizado es equivalente al cambio en la energía cinetica entonces tenemos que
KE = W
KE = F*d
In the First Case,

In Second Case,



The total energy change would be subject to,


Therefore the Kinetic Energy change of the charged object is 27.976J
Answer: Infrared light
Explanation:
Infrared light is an electromagnetic radiation which has longer wavelength than visible light.
cool and faint objects are difficult to be detected using visible light.
Infrared light can pass through dust and clouds of gases. Thus, it is the best way to study the young stars hidden behind interstellar dust clouds.
Answer:
1.61 second
Explanation:
Angle of projection, θ = 53°
maximum height, H = 7.8 m
Let T be the time taken by the ball to travel into air. It is called time of flight.
Let u be the velocity of projection.
The formula for maximum height is given by

By substituting the values, we get

u = 9.88 m/s
Use the formula for time of flight


T = 1.61 second