Answer:
The general formula for an acid is HnX where H stands for hydrogen, n stands for the number of hydrogen ions, and X stands for the monatomic or polyatomic ions ( since those are negative charged ions, they are called anions).
Explanation:
The general formula for an acid is HnX) where H stands for hydrogen, n stands for the number of hydrogen ions, and X stands for the monatomic or polyatomic ions ( since those are negative charged ions, they are called anions).
An example is H2SO4, also called sulfuric acid
It shows that H2SO4 has 2 hydrogen atoms, so in the formula HnX n=2
X fro H2SO4 is SO42-, it's a polyatomic ion. Since it has a negative charge of 2- it needs 2 hydrogen atoms to bind and form H2SO4
% by mass = (mass solute/mass solution)*100%
mass of the solute = 54.7 g
mass of the solution = mass solute + mass solvent=54.7+500=554.7 g
% by mass = (54.7/554.7)*100%≈0.0986*100% = 9.86%
Answer:
Algo importante sobre el balance de una reacción química es la ley de la conservación de la masa que establece que la masa no se crea ni se destruye sólo se transforma de modo que en una reacción química la suma de la masa de los reactivos debe ser igual a la suma de la masa de los productos.
Por ejemplo: La fermentación de la glucosa es una reacción química balanceada que da como resultado etanol y dióxido de carbono.
C₆H₁₂O₆ → 2C₂H₆O +2CO₂
Calculando la masa de los reactivos y productos, se debe cumplir la ley de la conservación de la masa:
C₆H₁₂O₆= 6*12+12*1+6*16=180 g/mol
C₂H₆O= 2*12+6*1+16=46 g/mol
CO₂=12+2*16=44 g/mol
C₆H₁₂O₆ → 2C₂H₆O + 2CO₂
180 g/mol = 2*46 g/mol + 2*44 g/mol
180 g/mol = 92 g/mol + 88 g/mol
180 g/mol = 180 g/mol
The _____melting point________ is the temperature at which a substance changes from solid to liquid; _______boiling point_________ is the temperature at which a substance changes from a liquid to as gas; _______vapourisation_________ is the process by which atoms of molecules leave a liquid and become a gas.
A gas can be treated as ideal gas when it is at higher temperatures or low pressures relative to its critical temperature and pressure. Because, at high temperatures and low pressures, the density of gas decreases and at low densities real gases behave as ideal gases.