Answer:
Many forms of energy exist, but they all fall into two basic categories:Potential energy.Kinetic energy.
Answer:

Explanation:
In this problem, the temperature stays constant. The volume and pressure change, so we use Boyle's Law. This states that the pressure of a gas is inversely proportional to the volume. The formula is:

Now we can substitute any known values into the formula.
Originally, the gas has a volume of 25.0 liters and a pressure of 2.05 atmospheres.

The volume is decreased to 14.5 liters, but the pressure is unknown.

Since we are solving for the new pressure, or P₂, we must isolate the variable. It is being multiplied by 14.5 liters and the inverse of multiplication is division. Divide both sides by 14.5 L .


The units of liters cancel.



The original values of volume and pressure have 3 significant figures, so our answer must have the same.
For the number we found, that is the hundredth place.
The 4 in the thousandth place (in bold above) tells us to leave the 3 in the hundredth place.

The new pressure is approximately <u>3.53 atmospheres.</u>
Answer : If an increase in temperature accompanies a reaction, energy is released. Explanation :In thermodynamics, the reaction is considered as a system and the medium in which the reaction occurs which is usually an aqueous medium is considered as its surrounding. When the heat flows from the system to its surrounding, it increases the temperature of surrounding medium because the heat released by the system is absorbed by its surrounding. This is known as exothermic reaction. An exothermic reaction is always accompanied by energy release. On the other hand, when the heat flows from the surrounding towards system, it decreases the temperature of the surrounding medium. This is known as endothermic reaction. From the above discussion we can say that If an increase in temperature accompanies a reaction, energy is released.
Good luck ;)
The fourth statement is true..........
Answer:
petroleum,natural gas,lime stone, coal,water,acetylene etc.