0.212 g of KHP is are dissolved in 50.00 mL of water and are titrated by 35.00 mL of 0.0297 M NaOH.
Potassium hydrogen phthalate, KHP, is a monoprotic acid often used to standardize NaOH solutions.
The balanced neutralization equation is:
NaOH(aq) + KHC₈H₄O₄(aq) ⇒ KNaC₈H₄O₄(aq) + H₂O(l)
- Step 1: Calculate the reacting moles of KHP.
0.212 g of KHP react. The molar mass of KHP is 204.22 g/mol.
0.212 g × 1 mol/204.22 g = 1.04 × 10⁻³ mol
- Step 2: Determine the reacting moles of NaOH.
The molar ratio of NaOH to KHP is 1:1.
1.04 × 10⁻³ mol KHP × 1 mol NaOH/1 mol KHP = 1.04 × 10⁻³ mol NaOH
- Step 3: Calculate the molarity of NaOH.
1.04 × 10⁻³ moles of NaOH are in 35.00 mL of solution.
[NaOH] = 1.04 × 10⁻³ mol / 35.00 × 10⁻³ L = 0.0297 M
0.212 g of KHP is are dissolved in 50.00 mL of water and are titrated by 35.00 mL of 0.0297 M NaOH.
Learn more about titration here: brainly.com/question/4225093
Answer:
Amplitude does not effect the wavelength in linear system.
Explanation:
Amplitude:
It is the measure of height from peak to trough.
Wavelength:
It is measure of length from peak to peak.
There is no relation between the amplitude and wavelength but if the system will no more linear then high amplitude can cause the distortion in wave if more frequencies are present. However frequency and wavelength can be related. The wave with higher frequency have shorter wavelength and vise versa.
Frequency:
It is the number of waves passing through a given point in a given time period. It is measure in Hz or s⁻¹
What occurs is they neutralize both acid and base characteristics/features, usually producing a salt.
Hope this shells!