2 meters per second. You do 10 divided by 5 to find your answer, which is 2.
Answer:
According to Coulomb’s law, the Ca and Se ions have 4 times the attractive force (2+ × 2-) than that of the K and Br ions (1+ × 1-).
Explanation:
From Coulomb's law, the attractive force between calcium and selenium ions is four times the attractive force between potassium and bromide ions.
This has something to do with size and magnitude of charge. Calcium ions and selenide ions are smaller and both carry greater charge magnitude than potassium and bromide ions. This paves way for greater electrostatic attraction between them when the distance of the charges apart is minimal. Hence a greater lattice energy.
Hydrocarbons are molecules that contain only carbon and hydrogen. Due to carbon's unique bonding patterns, hydrocarbons can have single, double, or triple bonds between the carbon atoms. The names of hydrocarbons with single bonds end in "-ane," those with double bonds end in "-ene," and those with triple bonds end in "-yne". The bonding of hydrocarbons allows them to form rings or chains.
Answer:
Ionic bonding is the complete transfer of valence electron(s) between atoms. It is a type of chemical bond that generates two oppositely charged ions. In ionic bonds, the metal loses electrons to become a positively charged cation, whereas the nonmetal accepts those electrons to become a negatively charged anion.
Answer:
When cells become damaged or die the body makes new cells to replace them. This process is called cell division. One cell doubles by dividing into two. Two cells become four and so on.
Explanation: