Answer:
r = 2.031 x 10⁶ m = 2031 km
Explanation:
In order for the asteroid to orbit the planet, the centripetal force must be equal to the gravitational force between asteroid and planet:
Centripetal Force = Gravitational Force
mv²/r = GmM/r²
v² = GM/r
r = GM/v²
where,
r = radial distance = ?
G = Universal Gravitational Constant = 6.67 x 10⁻¹¹ N.m²/kg²
M = Mass of Planet = 3.52 x 10¹³ kg
v = tangential speed = 0.034 m/s
Therefore,
r = (6.67 x 10⁻¹¹ N.m²/kg²)(3.52 x 10¹³ kg)/(0.034 m/s)²
<u>r = 2.031 x 10⁶ m = 2031 km</u>
i'm stuck on that question also
Answer:
-5 V
Explanation:
The charged particle (which is positively charged) moves from point A to B, and its kinetic energy increases: it means that the particle is following the direction of the field, so its potential energy is decreasing (because it's been converted into potential energy), therefore it is moving from a point at higher potential (A) to a point at lower potential (B). This means that the value
vb−va
is negative.
We can calculate the potential difference between the two points by using the law of conservation of energy:

where:
is the change in kinetic energy of the particle
is the charge of the particle
is the potential difference
Re-arranging the equation, we can find the value of the potential difference:

Answer:
B
Explanation:
Speed is the magnitude of the velocity vector, so it can never be negative.