Speed of sound in cold air < Speed of sound in Warm air < Speed of sound in hot molten lead < Speed of sound in water
Explanation:
Step 1:
Speed of sound in water varies from 1450 to 1498 meters per second
Speed of sound in Hot Molten lead is approximately 1210 meters per second
Speed of sound in warm air is approximately 338.89 meters per second
Speed of sound in cold air is approximately 293.33 meters per second
Step 2:
In warm air sound travels faster than that of sound travelling nature in cold air.
∴ Speed of sound in cold air < Speed of sound in Warm air < Speed of sound in hot molten lead < Speed of sound in water
Speed of sound in cold air the slowest while Speed of sound in water is the fastest mean.
 
        
             
        
        
        
<span>An Object 4 Cm Tall Is Placed 12 Cm From A Divergi... | Chegg.com</span>
        
                    
             
        
        
        
Answer:  An Incident on Route 12 is presented here in a high quality paperback edition. This popular classic work by James H. Schmitz is in the English language, and may not include graphics or images from the original edition.
Explanation: I HOPE THAT HELPED
 
        
             
        
        
        
Answer:
.7917 m/s
Explanation:
This is a conservation of momentum question. You have an object initially at rest (cart) so that object is initially at 0 momentum. Indiana Jones is 83.5 kg and running 3.75 m/s so he starts with a momentum of 313.125 kg * m/s because momentum is equal to mass * velocity. Once the person jumps in the cart, the cart and the person can be considered one object and by conservation of momentum, the momentum of the Indiana-cart system is equal to 313.125 kg * m/s. By that, we can set that momentum equal to the combined mass * joint velocity. So 313.125 = (83.5kg + 312kg) * joint velocity. Then just solve for the velocity. The answer should be smaller than the intial velocity of the person of 3.75 m/s because the mine cart is HUGE at 312kg. 
 
        
             
        
        
        
Answer:
The Richter scale measures the largest wiggle (amplitude) on the recording, but other magnitude scales measure different parts of the earthquake. The USGS currently reports earthquake magnitudes using the Moment Magnitude scale, though many other magnitudes are calculated for research and comparison purposes.