Answer:
The calculated concentration of sodium thiosulphate solution will be less than the actual value.
Explanation:
When IO3^2- solution is added to KI solution, I2 gas is released ,then sulphuric acid is now added to facilitate reduction. In order to prevent the escape of iodine (I2) gas ,the solution must immediately be titrated with thiosulphate.
If the solution is not immediately titrated with thiosulphate, the concentration of iodine available in the system decreases. When this occurs, it will also cause a decrease in the amount of iodine available to react with thiosulphate thus decreasing the concentration of thiosulphate obtained from calculation
Answer:
A. O=C=O and O≡C−O
Explanation:
Resonance:
When the electron distribution on the molecule become uneven like one molecule have more electron compare to other.Resonance occurs due to overlap of the orbitals.When electron flow through pi system then resonance occurs.
So the option A is correct.
A. O=C=O and O≡C−O
Answer:
The number of protons is equal to the mass number of the element. Since an element always has a different number of protons, the mass can indicate how many neutrons are in an isotope. Atoms of the same element can have a different number of neutrons. There are three naturally-occurring isotopes of carbon.
Explanation:
What is reflux? isn't it like when u aren't able to digest something?
Answer:
42.65g
Explanation:
Given parameters:
Mass of K = 4g
Unknown: Mass of KCl
Solution:
Complete equation of the reaction:
2K + Cl₂ → 2KCl
To solve this problem, we know that the reactant in short supply is potassium K and this dictates the amount of products that would be formed. The chlorine gas is in excess and we can't use it to determine the amount of product that would form.
Now, we work from the known to the unknown. Since we know the mass of K given in the reaction, we can simply find the molar relationship between the reacting potassium and the product. We simply convert the mass to mole and compare to the product. From there we can find the mass of KCl that would be produced.
Calculating number of moles of K
Number of moles = 
Number of moles of K =
= 0.103mol
From the given reaction equation:
2 moles of K will produce 2 moles of KCl
Therefore 0.103mol of K will produce 0.103mol of KCl
To find the mass of KCl produced,
Mass of KCl = number of moles of KCl x molar mass
Molar mass of KCl = 39 + 35.5 = 74.5gmol⁻¹
Mass of KCl = 0.103 x 74.5 = 42.65g