Explanation:
A reaction quotient is defined as the ratio of concentration of products over reactants raised to the power of their stoichiometric coefficients.
A reaction quotient is denoted by the symbol Q.
For example, 
The reaction quotient for this reaction is as follows.
Q = ![\frac{[Fe^{2+}]^{2}[Zn^{2+}]}{[Fe^{3+}]^{2}}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BFe%5E%7B2%2B%7D%5D%5E%7B2%7D%5BZn%5E%7B2%2B%7D%5D%7D%7B%5BFe%5E%7B3%2B%7D%5D%5E%7B2%7D%7D)
[Zn] will be equal to 1 as it is present in solid state. Therefore, we don't need to write it in the reaction quotient expression.
Answer:
20.1 g
Explanation:
The solubility indicates how much of the solute the solvent can dissolve. A solution is saturated when the solvent dissolved the maximum that it can do, so, if more solute is added, it will precipitate. The solubility varies with the temperature. Generally, it increases when the temperature increases.
So, if the solubility is 40.3 g/L, and the volume is 500 mL = 0.5 L, the mass of the solute is:
40.3 g/L = m/V
40.3 g/L = m/0.5L
m = 40.3 g/L * 0.5L
m = 20.1 g

The relationship between mass of matter per unit volume is known as :

_____________________________
