The given problem can be exemplified in the following diagram:
Since there is no friction or any other external force, the only force acting in the direction of the movement is the component of the weight of the block, therefore, applying Newton's second law:

Replacing the values:

We may cancel out the mass:

Using the gravity constant as 9.8 meters per square second:

Solving the operations:

Therefore, the acceleration is 6.3 meters per square second.
Answer 1) The electric field at distance r from the thread is radial and has magnitude
E = λ / (2 π ε° r)
The electric field from the point charge usually is observed to follow coulomb's law:
E = Q / (4 π ε°
)
Now, adding the two field vectors:
= {2.5 / (22 π ε° X 0.07 ) ; 0}
Answer 2)
= {2.3 / (4 2 π ε°) ( - 7/ (√(84); -12 / (√84))
Adding these two vectors will give the length which is magnitude of the combined field.
The y-component / x-component gives the tangent of the angle with the positive x-axes.
Please refer the graph and the attachment for better understanding.
Answer:
1.1648×10⁻¹¹ N
Explanation:
Using
F = qvBsinФ..................... Equation 1
Where F = Force on the proton, q = charge, v = velocity, B = magnetic Field, Ф = angle between the magnetic Field and the velocity.
Note: The angle between v and B = 90°
Given: v = 5.2×10⁷ m/s, B = 1.4 T, q = 1.6×10⁻¹⁹ C, Ф = 90°
Substitute into equation 1
F = 1.6×10⁻¹⁹(5.2×10⁷)(1.4)sin90°
F = 11.648×10⁻¹²
F = 1.1648×10⁻¹¹ N.
Humid air has higher pressure because of the heaviness of the water
Answer:
Low pressure systems typically arrive with storms and clouds. Air motion is usually upwards, as heated are is less dense and more buoyant than cooler air. A high pressure system is typically cooler than its counter-part, and skies are usually clear. Low pressure systems carry more water vapor due to rising hot air cooling and condensing.