The pressure drop of air in the bed is 14.5 kPa.
<u>Explanation:</u>
To calculate Re:

From the tables air property

Ideal gas law is used to calculate the density:
ρ = 
ρ = 1.97 Kg / 
ρ = 
R =
= 8.2 ×
/ 28.97×
R = 2.83 ×
atm / K Kg
q is expressed in the unit m/s
q = 1.24 m/s
Re =
Re = 2278
The Ergun equation is used when Re > 10,


= 4089.748 Pa/m
ΔP = 4089.748 × 3.66
ΔP = 14.5 kPa
The reason why giant stars become planetary nebulas is Supergiant stars do not have enough mass to generate the gravity necessary to cause a planetary nebula.
<h3>Why do giant stars become planetary nebulae?</h3>
A planetary nebula is known to be formed or created by a dying star. A red giant is known to be unstable and thus emit pulses of gas that is said to form a sphere around the dying star and thus they are said to be ionized by the ultraviolet radiation that the star is known to releases.
Learn more about giant stars from
brainly.com/question/27111741
#SPJ1
Answer:
VR Prototyping
VR Prototyping Can Save you Thousands of Dollars.
Explanation:
there you go lad
Answer:
Suction and exhaust processes do not affect the performance of Otto cycle.
Explanation:
Step1
Inlet and exhaust flow processes are not including in the Otto cycle because the effect and nature of both the process are same in opposite direction.
Step2
Inlet process or the suction process is the process of suction of working fluid inside the cylinder. The suction process is the constant pressure process. The exhaust process is the process of exhaust out at constant pressure.
Step3
The suction and exhaust process have same work and heat in opposite direction. So, net effect of suction and exhaust processes cancels out. The suction and exhaust processes are shown below in P-V diagram of Otto cycle:
Process 0-1 is suction process and process 1-0 is exhaust process.