Okay I believe you I swear
Answer:
203.0160
Explanation:
Because you add then subtract then multiply buy 7 the subtract then divide then you add that to the other numbers you got than boom
Answer:

Explanation:
given data:
pressure 1 MPa
diameter of pipe = 30 cm
average velocity = 10 m/s
area of pipe

A = 0.070 m2
WE KNOW THAT mass flow rate is given as

for pressure 1 MPa, the density of steam is = 4.068 kg/m3
therefore we have


Explanation:
Sum of forces in the x direction:
∑Fx = ma
Rx − 250 N = 0
Rx = 250 N
Sum of forces in the y direction:
∑Fy = ma
Ry − 120 N − 300 N = 0
Ry = 420 N
Sum of forces in the z direction:
∑Fz = ma
Rz − 50 N = 0
Rz = 50 N
Sum of moments about the x axis:
∑τx = Iα
Mx + (-50 N)(0.2 m) + (-120 N)(0.1 m) = 0
Mx = 22 Nm
Sum of moments about the y axis:
∑τy = Iα
My = 0 Nm
Sum of moments about the z axis:
∑τz = Iα
Mz + (250 N)(0.2 m) + (-120 N)(0.16 m) = 0
Mz = -30.8 Nm
Answer:
The radius of a wind turbine is 691.1 ft
The power generation potential (PGP) scales with speed at the rate of 7.73 kW.s/m
Explanation:
Given;
power generation potential (PGP) = 1000 kW
Wind speed = 5 mph = 2.2352 m/s
Density of air = 0.0796 lbm/ft³ = 1.275 kg/m³
Radius of the wind turbine r = ?
Wind energy per unit mass of air, e = E/m = 0.5 v² = (0.5)(2.2352)²
Wind energy per unit mass of air = 2.517 J/kg
PGP = mass flow rate * energy per unit mass
PGP = ρ*A*V*e

r = 210.64 m = 691.1 ft
Thus, the radius of a wind turbine is 691.1 ft
PGP = CVᵃ
For best design of wind turbine Betz limit (c) is taken between (0.35 - 0.45)
Let C = 0.4
PGP = Cvᵃ
take log of both sides
ln(PGP) = a*ln(CV)
a = ln(PGP)/ln(CV)
a = ln(1000)/ln(0.4 *2.2352) = 7.73
The power generation potential (PGP) scales with speed at the rate of 7.73 kW.s/m