If you can't ignore a distraction, as a driver you should: D. Both A and B.
<h3>What is a distraction?</h3>
A distraction can be defined as any form of event that is capable of making a driver to loose concentration or lure his or her eyes away from the road.
This ultimately implies that, a distraction can cause a driver to experience a road accident (car crash) if not properly managed or ignored.
In conclusion, if you can't ignore a distraction, as a driver you should pull over or take care of it at your next planned stop.
Read more on traffic regulations here: brainly.com/question/22768531
Answer:
P2 = 3.9 MPa
Explanation:
Given that
T₁ = 290 K
P₁ = 95 KPa
Power P = 5.5 KW
mass flow rate = 0.01 kg/s
solution
with the help of table A5
here air specific heat and adiabatic exponent is
Cp = 1.004 kJ/kg K
and k = 1.4
so
work rate will be
W = m × Cp × (T2 - T1) ..........................1
here T2 = W ÷ ( m × Cp) + T1
so T2 = 5.5 ÷ ( 0.001 × 1.004 ) + 290
T2 = 838 k
so final pressure will be here
P2 = P1 ×
..............2
P2 = 95 × 
P2 = 3.9 MPa
To solve this problem it is necessary to apply the concepts related to the heat exchange of a body.
By definition heat exchange in terms of mass flow can be expressed as

Where
Specific heat
= Mass flow rate
= Change in Temperature
Our values are given as
Specific heat of air



From our equation we have that


Rearrange to find 

Replacing


Therefore the exit temperature of air is 53.98°C
Answer:
R = 148.346 N
M₀ = - 237.2792 N-m
Explanation:
Point O is selected as a convenient reference point for the force-couple system which is to represent the given system
We can apply
∑Fx = Rx = - 60N*Cos 45° + 40N + 80*Cos 30° = 66.8556 N
∑Fy = Ry = 60N*Sin 45° + 50N + 80*Sin 30° = 132.4264 N
Then
R = √(Rx²+Ry²) ⇒ R = √((66.8556 N)²+(132.4264 N)²)
⇒ R = 148.346 N
Now, we obtain the moment about the origin as follows
M₀ = (0 m*40 N)-(7 m*60 N*Sin 45°)+(4 m*60 N*Cos 45°)-(5 m*50 N)+ 140 N-m + (0 m*80 N*Cos 30°) + (0 m*80 N*Sin 30°) = - 237.2792 N-m (clockwise)
We can see the pic shown in order to understand the question.
Explanation:
first changing kilo ohm to ohm
860000 = 860 kΩ
and change 34 micro ampare to ampare
34 μA=3.4×10^-5
recalling the equation V=I*R
V= 3.4×10^-5×860000
v=29.24