1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sweet [91]
3 years ago
12

Partes de un transformador

Engineering
1 answer:
BartSMP [9]3 years ago
6 0
Está constituido por dos bobinas de material conductor, devanadas sobre un núcleo cerrado de material ferromagnético, pero aisladas entre sí eléctricamente. ... Las bobinas o devanados se denominan primario y secundario según correspondan a la entrada o salida del sistema en cuestión, respectivamente.
You might be interested in
An alloy has a yield strength of 818 MPa and an elastic modulus of 104 GPa. Calculate the modulus of resilience for this alloy [
crimeas [40]

Answer:

Modulus of resilience will be 3216942.308j/m^3

Explanation:

We have given yield strength \sigma _y=818MPa

Elastic modulus E = 104 GPa

We have to find the modulus

Modulus of resilience is given by

Modulus of resilience =\frac{\sigma _y^2}{2E}, here \sigma _y is yield strength and E is elastic modulus

Modulus of resilience =\frac{(818\times 10^6)^2}{2\times 104\times 10^9}=3216942.308j/m^3  

5 0
3 years ago
A wastewater plant discharges a treated effluent (w) with a flow rate of 1.1 m^3/s, 50 mg/L BOD5 and 2 mg/L DO into a river (s)
4vir4ik [10]

A wastewater plant discharges a treated effluent (w) with a flow rate of 1.1 m^3/s, 50 mg/L BOD5 and 2 mg/L DO into a river (s) with a flow rate of 8.7 m^3/s, 6 mg/L BOD5 and 8.3 mg/L DO. Both streams are at 20°C. After mixing, the river is 3 meters deep and flowing at a velocity of 0.50 m/s. DOsat for this river is 9.0 mg/L. The deoxygenation constant is kd= 0.20 d^-1 and The reaction rate constant k at 20 °C is 0.27 d^-1.

The answer therefore would be the number 0.27 divided by two and then square while getting the square you would make it a binomial.

I wont give the answer but the steps

Your Welcome

8 0
3 years ago
Physical properties of minerals
lord [1]

Most minerals can be characterized and classified by their unique physical properties: hardness, luster, color, streak, specific gravity, cleavage, fracture, and tenacity.

<em>-</em><em> </em><em>BRAINLIEST</em><em> answerer</em><em> ❤️</em><em>✌</em>

6 0
2 years ago
Read 2 more answers
A power plant operates on a regenerative vapor power cycle with one open feedwater heater. Steam enters the first turbine stage
faltersainse [42]

Answer:

a) 0.489

b) 54.42 kg/s

c) 247.36 kW/s

Explanation:

Note that all the initial enthalpy and entropy values were gotten from the tables.

See the attachment for calculations

4 0
3 years ago
1. (5 pts) An adiabatic steam turbine operating reversibly in a powerplant receives 5 kg/s steam at 3000 kPa, 500 °C. Twenty per
KiRa [710]

Answer:

temperature of first extraction 330.8°C

temperature of second extraction 140.8°C

power output=3168Kw

Explanation:

Hello!

To solve this problem we must use the following steps.

1. We will call 1 the water vapor inlet, 2 the first extraction at 100kPa and 3 the second extraction at 200kPa

2. We use the continuity equation that states that the mass flow that enters must equal the two mass flows that leave

m1=m2+m3

As the problem says, 20% of the flow represents the first extraction for which 5 * 20% = 1kg / s

solving

5=1+m3

m3=4kg/s

3.

we find the enthalpies and temeperatures in each of the states, using thermodynamic tables

Through laboratory tests, thermodynamic tables were developed, these allow to know all the thermodynamic properties of a substance (entropy, enthalpy, pressure, specific volume, internal energy etc ..)  

through prior knowledge of two other properties

4.we find the enthalpy and entropy of state 1 using pressure and temperature

h1=Enthalpy(Water;T=T1;P=P1)

h1=3457KJ/kg

s1=Entropy(Water;T=T1;P=P1)

s1=7.234KJ/kg

4.

remembering that it is a reversible process we find the enthalpy and the temperature in the first extraction with the pressure 1000 kPa and the entropy of state 1

h2=Enthalpy(Water;s=s1;P=P2)

h2=3116KJ/kg

T2=Temperature(Water;P=P2;s=s1)

T2=330.8°C

5.we find the enthalpy and the temperature in the second extraction with the pressure 200 kPav y the entropy of state 1

h3=Enthalpy(Water;s=s1;P=P3)

h3=2750KJ/kg

T3=Temperature(Water;P=P3;s=s1)

T3=140.8°C

6.

Finally, to find the power of the turbine, we must use the first law of thermodynamics that states that the energy that enters is the same that must come out.

For this case, the turbine uses a mass flow of 5kg / s until the first extraction, and then uses a mass flow of 4kg / s for the second extraction, taking into account the above we infer the following equation

W=m1(h1-h2)+m3(h2-h3)

W=5(3457-3116)+4(3116-2750)=3168Kw

7 0
2 years ago
Other questions:
  • Write a modular program that finds the equation, area, and circumference of a circle, given the coordinates of the center of the
    11·1 answer
  • An engineer is considering time of convergence in a new Layer 3 environment design. Which two attributes must be considered? (Ch
    15·1 answer
  • Estimate the uncertainty in a 22 m/sec air velocity measurement using a Pitot tube at 20C. Assume the atmospheric pressure is 1
    7·1 answer
  • List three reasons for surfacing metals.
    8·2 answers
  • what is the expected life 1 inch diameter bar machined from AISI 1020 CD Steel is subjected to alternating bending stress betwee
    9·1 answer
  • Drag each label to the correct location on the image.
    5·2 answers
  • Introduction for site visit​
    13·1 answer
  • A student is building a circuit which material should she use for the wires and why?
    10·2 answers
  • Which of the following is an example of a pulley?
    10·2 answers
  • A 1.9-mm-diameter tube is inserted into an unknown liquid whose density is 960 kg/m3, and it is observed that the liquid rises 5
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!