The acceleration due to gravity of Mars is 
<u>Explanation:</u>
As per universal law of gravity, the gravitational force is directly proportional to the product of masses and inversely proportional to the square of the distance between them. But in the present case, the gravity need to be determined between Mars and the object on Mars. Since the mass of Mars is greater than the mass of any object. Thus,

Here, G is the gravitational constant, R is the radius of Mars and M, m is the mass of Mars and the object respectively..
Also, according to Newton’s second law of motion, the acceleration of any object will be equal to the ratio of force exerted on it to the mass of the object.
So in order to determine the acceleration due to gravity of Mars, divide the gravitational force of Mars by mass of object on the surface of Mars.




Answer:
In the clarification portion elsewhere here, the definition of the concern is mentioned.
Explanation:
So like optical telescopes capture light waves, introduce it to concentrate, enhance it, as well as make it usable through different instruments via study, so radio telescopes accumulate weak signal light waves, introduce that one to focus, enhance it, as well as make this information available during research. To research naturally produced radio illumination from stars, galaxies, dark matter, as well as other natural phenomena, we utilize telescopes.
Optical telescopes detect space-borne visible light. There are some drawbacks of optical telescopes mostly on the surface:
- Mostly at night would they have been seen.
- Unless the weather gets cloudy, bad, or gloomy, they shouldn't be seen.
Although radio telescopes monitor space-coming radio waves. Those other telescopes, when they are already typically very massive as well as costly, have such an improvement surrounded by optical telescopes. They should be included in poor weather and, when they travel through the surrounding air, the radio waves aren't obscured by clouds. Throughout the afternoon and also some at night, radio telescopes are sometimes used.
Answer:
(a) 
(b) 
(c) 
Explanation:
First change the units of the velocity, using these equivalents
and 

The angular acceleration
the time rate of change of the angular speed
according to:


Where
is the original velocity, in the case the velocity before starting the deceleration, and
is the final velocity, equal to zero because it has stopped.

b) To find the distance traveled in radians use the formula:


To change this result to inches, solve the angular displacement
for the distance traveled
(
is the radius).


c) The displacement is the difference between the original position and the final. But in every complete rotation of the rim, the point returns to its original position. so is needed to know how many rotations did the point in the 890.16 rad of distant traveled:

The real difference is in the 0.6667 (or 2/3) of the rotation. To find the distance between these positions imagine a triangle formed with the center of the blade (point C), the initial position (point A) and the final position (point B). The angle
is between the two sides known. Using the theorem of the cosine we can find the missing side of the the triangle(which is also the net displacement):


I think the answer is photosynthis, when plants turn light into food and energy.