We have that F=ma from the 2nd Newton law where F is the force, m is the mass and a is the acceleration. Suppose we have that F' is the new force and m' is the new mass. Then, we have that a'=F'/m' still, by rearranging Newton's law. We are given that F'=2F and m'=m/2. Hence,

But now, we have from F=ma, that a=F/m and we are given that a=1m/s^2.
We can substitute thus, a'=4a=4*1m/s^2=4m/s^2.
Answer:

Explanation:
Given:
- mass of car,

- distance of skidding after the application of brakes,

- coefficient of kinetic friction,

<u>So, the energy dissipated during the skidding of car:</u>
<em>Frictional force:</em>

where N = normal reaction by ground on the car


<em>Now from the work-energy equivalence:</em>


is the dissipated energy.
5.00kg
random = abcdefghijklmnopqrstuvwxyz
Answer:
7200 kg.m/s
Explanation:
According the law of conservation of linear momentum, the sum of momentum before and after collision are equal.
Using this principle, the sum of initial momentum will be given as p=mv where p is momentum, m is mass and v is velocity
Initial momentum
Mass of whale*initial velocity of whale + mass of seal*initial seal velocity
Since the seal is initially stationary, its velocity is zero. By substitution and taking right direction as positive
Initial momentum will be
1200*6+(280*0)=7200 kg.m/s
Since both initial and final momentum should be equal, hence the final momentum will also be 7200 kg.m/s
Mass= volume x density
Mass= 90kg/m^3 x 2.3m^3
Therefore, Mass= 207 kg