The only factoring you need to do is already done for you:
<em>x</em>² + <em>x</em> - 12 = (<em>x</em> + 4) (<em>x</em> - 3)
What you're asked to do is decompose
(3<em>x</em> - 4) / (<em>x</em>² + <em>x</em> - 12)
into partial fractions, i.e. find <em>a</em> and <em>b</em> such that
(3<em>x</em> - 4) / (<em>x</em>² + <em>x</em> - 12) = <em>a</em> / (<em>x</em> + 4) + <em>b</em> / (<em>x</em> - 3)
Multiply both sides by <em>x</em>² + <em>x</em> - 12 :
3<em>x</em> - 4 = <em>a</em> (<em>x</em> - 3) + <em>b</em> (<em>x</em> + 4)
3<em>x</em> - 4 = (<em>a</em> + <em>b</em>) <em>x</em> + (-3<em>a</em> + 4<em>b</em>)
So we have
<em>a</em> + <em>b</em> = 3
-3<em>a</em> + 4<em>b</em> = -4
and solving this system gives
<em>a</em> = 16/7 and <em>b</em> = 5/7
so you should submit the numbers in bold:
(3<em>x</em> - 4) / (<em>x</em>² + <em>x</em> - 12) = 16 / (7 (<em>x</em> + 4)) + 5 / (7 (<em>x</em> - 3))
Calleigh should put in 30 pennies
Answer:
C.I = 0.7608 ≤ p ≤ 0.8392
Step-by-step explanation:
Given that:
Let consider a random sample n = 400 candidates where 320 residents indicated that they voted for Obama
probability 
= 0.8
Level of significance ∝ = 100 -95%
= 5%
= 0.05
The objective is to develop a 95% confidence interval estimate for the proportion of all Boston residents who voted for Obama.
The confidence internal can be computed as:

where;
=
= 1.960
SO;






= 0.8 - 0.0392 OR 0.8 + 0.0392
= 0.7608 OR 0.8392
Thus; C.I = 0.7608 ≤ p ≤ 0.8392
Answer:
1436.75504 or 1372/3π cm^3
Step-by-step explanation:
The volume of a sphere can be found using:
V = 4/3 πr^3
We know the radius is 7, so we can substitute 7 in for r
V = 4/3 π7^3
Evaluate the exponent
V = 4/3 π 343
If we want the answer in terms of pi, multiply the two other numbers, that are not pi: 4/3 and 343.
v= (4/3*343)π
v=1372/3π
If we want an exact answer, multiply 1372/3 and pi
v=1436.75504
So, the volume is 1436.75504 or 1372/3 π cm^3