Answer:
Explanation:
Mass of ice m = 500g = .5 kg
Heat required to raise the temperature of ice by 10 degree
= mass of ice x specific heat of ice x change in temperature
= .5 x 2093 x 10 J
10465 J
Heat required to melt the ice
= mass of ice x latent heat
0.5 x 334 x 10³ J
167000 J
Heat required to raise its temperature to 18 degree
= mass x specific heat of water x rise in temperature
= .5 x 4182 x 18
=37638 J
Total heat
=10465 +167000+ 37638
=215103 J
Answer:
Part a)

Part b)

Part c)

Explanation:
Part a)
As we know that force on the passenger while moving in circle is given as

now variation in force is given as

here speed is constant
Part b)
Now if the variation in force is required such that r is constant then we will have

so we have

Part c)
As we know that time period of the circular motion is given as

so here if radius is constant then variation in time period is given as

I don't no if this helps but the body heat from your hand causes the liquid to boil, which in turn makes the liquid evaporate, turning it to gas. The expanding gas pushes the liquid upwards and when you release your hand, equilibrium is re-established.
The charge on each of the equally charged drops of hairspray willl be 7 × 10 ⁻¹³ C
<h3>What is Columb's law?</h3>
The force of attraction between two charges, according to Coulomb's law, is directly proportional to the product of the charges and inversely proportional to the square of the distance between them.
Similar charges repel each other, whereas charges that are opposed attract each other.
Given data;
Electric force,F = 9 × 10 ⁻⁹ N
Distance between charges,d = 7 × 10⁻⁴ m
Chrge,q₁ = q₂ =q C
From Columb's law;

Hence the charge on each of the equally charged drops of hairspray willl be 7 × 10 ⁻¹³ C
To learn more about Columb's law refer to the link;
brainly.com/question/1616890
#SPJ1
Answer:
Yes the body will receive a dangerous shock in both cases.
Explanation:
Different parts of the body has different resistance. skin has the high resistance as compared to other organs of the body.
Dry skin has high resistance than wet skin this is because water is relatively good conductor of electricity, it adds parallel path to the current flow and hence reduces skin resistance.
Dry hands body has approximately 500 kΩ resistance and if 120 V electricity supply current received will be:
I = V/R= 120/ 500*10^3
I= 0.24 mA
Even the current seems is much lower than the safe zone but this is the case in case of DC voltage in case of AC voltage the body will receive a shock this is because the skin pass more current when the voltage is changing i.e. AC.
Similarly for wet hands body resistance is 1 kΩ. so the current through the body seems to be:
I = 120 / 1000
I = 12 mA
The current is higher than safe zone so the body will receive a dangerous shock.