<u>Given </u><u>:</u><u>-</u>
- An elevator is moving vertically up with an acceleration a.
<u>To </u><u>Find</u><u> </u><u>:</u><u>-</u>
- The force exerted on the floor by a passenger of mass m .
<u>Solution</u><u> </u><u>:</u><u>-</u>
As the man is in a accelerated frame that is <u>non </u><u>inertial</u><u> frame</u><u> </u>, we would have to think of a pseudo force .
- The direction of this force is opposite to the direction of acceleration the frame and its magnitude is equal to the product of mass of the concerned body with the acceleration of the frame .
For the FBD refer to the attachment . From that ,
<u>Hence</u><u> </u><u>option</u><u> </u><u>d </u><u>is </u><u>correct</u><u> </u><u>choice </u><u>.</u>
<em>I </em><em>hope</em><em> this</em><em> helps</em><em> </em><em>.</em>
Answer:
This is very hard bit I think 6.3 my, I'm not shure.
B.
carbon dioxide molecules have more energy; therefore, the kinetic energy increases
(a) Equating centripetal force to friction force, one finds the relation
v² = kar
for car speed v, coefficient of friction k, radius of curvature r, and downward acceleration a.
There is already downward acceleration due to gravity. The additional accceleration due to the wing is
a = F/m = 10600 N/(805 kg) ≈ 13.1677 m/s²
We presume this is added to the 9.80 m/s² gravity provides, so the coefficient of friction is
k = v²/(ar) = (54 m/s)²/((13.1677 m/s² +9.80 m/s²)·(155 m))
k ≈ 0.8191
(b) The maximum speed is proportional to the square root of the downward acceleration. Changing that by a factor of 9.80/(9.80+13.17) changes the maximum speed by the square root of this factor.
max speed with no wing effect = (54 m/s)√(9.8/22.97) ≈ 35.27 m/s