We find the weight of the empirical formula:
12.0107 + 2 x 1.00794 + 15.9994
= 30.03
Now, we divide the molecular weight by the weight of the empirical formula to find the number of times the empirical formula repeats:
90.09 / 30.03
= 3
The formula is 3(CH₂O)
C₃H₆O₃
Explanation:
Given :
Amount of solute - sucrose (C12H22O11) = 41 g
Amount of solvent -soda = 355-mL
Molarity of the solution with respect to sucrose= ?
Molarity(M) is a unit of concentration measuring the number of moles of a solute per liter of solution. The SI unit of molarity is mol/L.
Formula to find the molarity of solution :
Molarity =
Amount of solvent is given in mL, let’s convert to L :
1 L = 1000 mL
Therefore, 355 mL in L will be :
= 0.355 L
We have the amount of solute in g, let’s calculate the number of moles first :
Number of moles (n) =
Molar mass of C12H22O11 = 342.29 g/mol.
Therefore, n =
= 0.119 moles.
Answer:
The answer to your question is: 101.2 g of CO2
Explanation:
C = 27.6 g
O₂ = 86.5 g remained 12.9 g
O₂ that reacted = 86.5 - 12.9 = 73.6 g
C + O₂ ⇒ CO₂ The equation is balanced
27.6 73.6 ?
MW 12 32 44
Rule of three
12 g of C------------------ 44 g CO2
27.6 g C ------------------ x
x = 27.6(44)/12 = 101.2 g of CO2
32 g of O2 --------------- 44 g of CO2
73.6 g of O2 ------------ x
x = 73.6(44)/32 = 101.2 g of CO2
The answer should be hydrogen bonding. Water only has oxygen and hydrogen in it, which are both nonmetals, so you know the answer cannot be metallic or ionic. It also cannot be nonpolar because the electronegativity of the oxygens will make the molecule polar. You can also know it is hydrogen bonding because it can only take place when a hydrogen is attached to an oxygen, fluorine, or nitrogen. These bonds are very strong attractions, so the molecules are extremely hard to pull apart, creating a high boiling point. Hope that helps!