The pressure at a certain depth underwater is:
P = ρgh
P = pressure, ρ = sea water density, g = gravitational acceleration near Earth, h = depth
The pressure exerted on the submarine window is:
P = F/A
P = pressure, F = force, A = area
The area of the circular submarine window is:
A = π(d/2)²
A = area, d = diameter
Set the expressions for the pressure equal to each other:
F/A = ρgh
Substitute A:
F/(π(d/2)²) = ρgh
Isolate h:
h = F/(ρgπ(d/2)²)
Given values:
F = 1.1×10⁶N
ρ = 1030kg/m³ (pulled from a Google search)
g = 9.81m/s²
d = 30×10⁻²m
Plug in and solve for h:
h = 1.1×10⁶/(1030(9.81)π(30×10⁻²/2)²)
h = 1540m
Answer:
The force of static friction acting on the luggage is, Fₓ = 180.32 N
Explanation:
Given data,
The mass of the luggage, m = 23 kg
You pulled the luggage with a force of, F = 77 N
The coefficient of static friction of luggage and floor, μₓ = 0.8
The formula for static frictional force is,
Fₓ = μₓ · η
Where,
η - normal force acting on the luggage 'mg'
Substituting the values in the above equation,
Fₓ = 0.8 x 23 x 9.8
= 180.32 N
Hence, the minimum force require to pull the luggage is, Fₓ = 180.32 N
Answer:
Explanation:
Given
diameter of spacecraft 
radius 
Force of gravity
=mg
where m =mass of object
g=acceleration due to gravity on earth
Suppose v is the speed at which spacecraft is rotating so a net centripetal acceleration is acting on spacecraft which is given by





