3.
protium (A = 1), deuterium (A = 2), and tritium (A = 3).
Answer:
Companies know that people will be willing to spend more to get an in-demand product.
Explanation:
When a product is really in demand, many customers are willing to part with more money order to purchase the product, as a result of that, many companies may take advantage of the increasing demand for the product to hike it's price.
Hence, the increase in price may not really have a negative impact on the quantity demanded because the demand for the product is high and customers are willing to spend more money in order to purchase an in-demand product, hence the answer above.
Answer:
The correct answer is option D.
Explanation:
When a chemical reaction proceeds the reactants are converted into products. The energy hill represents the potential energy of the reaction.
There are two conditions: If the reaction is endothermic than the energy of the products is greater than the energy of the reactants and ΔH is positive. This energy gain is shown in the form of a peak. In an exothermic reaction, the energy of the products is lower than the reactants and ΔH is negative.
So the suitable option is D which states that the reaction is endothermic and the potential energy gained by the products is higher when a reaction proceeds.
Answer:
19.9 atoms
Explanation:
Grams --- Moles --- Atoms
You're converting from atoms (molecules) to moles.
You do not have to calculate the mass of "di phosphorus pentoxide."
Since you're already given 1.2x10^25 atoms, you start with that. You need to cancel out the atoms, so you need Avogadro's number as shown in the image.
(This has nothing to do with the problem) But in case if you're wondering, the "di" in phosphorus means there's 2 phosphorus and the "pent" means that there are 5 oxygens. So P2O5. Go to your periodic table, multiply their respective atomic masses. You would multiply phosphorus twice and oxygen 5 times. And add them up to get the overall mass.
I hope this helped!