Speed of wave is 8000 m/s.
Answer:
Explanation:
Speed is the measure of ratio of distance to time taken to cover that distance. In other words, speed is the measure of how fast the object can be move in a given time interval. So in this case, the wave is considered as object . And wave consists of wavelength in place of distance and frequency as reciprocal of time interval.
So speed of wave is calculated as the product of wavelength and frequency.
As the wavelength is given as 20 m and the frequency is given as 400 Hz, then the speed will be
Speed = wavelength × Frequency = 20 × 400
Speed of wave = 8000 m/s.
So speed of wave is 8000 m/s.
I attached the requested diagram.
<em>In the case of the magnetic field in a bar</em> by convention, the direction of the field is taken out of the north pole and towards the south pole of the magnet. These types of images are commonly made of some ferrous material.
<em>In the case of the horseshoe </em>magnet, the highly concentrated magnetic field is distinguished between its legs. In the figure it is shown in a contribution from North to South, again by agreement, however outside the two poles, the magnetic field falls rapidly. A horseshoe magnet is basically a bent bar magnet.
Explanation:
Given:
v₀ₓ = 15 m/s cos 20° = 14.10 m/s
aₓ = 0 m/s²
v₀ᵧ = 15 m/s sin 20° = 5.13 m/s
aᵧ = -9.8 m/s²
t = 1.5 s
Find: Δx and Δy
Δx = v₀ₓ t + ½ aₓ t²
Δx = (14.10 m/s) (1.5 s) + ½ (0 m/s²) (1.5 s)²
Δx = 21.1 m
Δy = v₀ᵧ t + ½ aᵧ t²
Δy = (5.13 m/s) (1.5 s) + ½ (-9.8 m/s²) (1.5 s)²
Δy = -3.33 m