Answer:
D. chlorine, oxygen, nitrogen, hydrogen.
Explanation:
- Thomas Graham found that, at a constant temperature and pressure the rates of effusion of various gases are inversely proportional to the square root of their masses.
<em>ν ∝ 1/√M</em>
where ν is the rate of effusion and M is the atomic or molecular mass of the gas particles.
- The molecular mass for the listed gases are:
O₂: 32.0 g/mol,
Cl₂: 70.906 g/mol,
N₂: 28.0 g/mol,
H₂: 2.0 g/mol.
- Hence, the smallest molecular mass of the gas, the fastest rate of effusion.
So, the order from the slowest to the fastest rate of effusion is:
<em>Chlorine, oxygen, nitrogen, hydrogen.</em>
Answer:
are a gas at very low volumes, when gas particles are very close together
a gas at very low temperatures, when gas particles have very little kinetic energy
a gas with highly polar molecules that have very strong intermolecular forces
Explanation:
Answer:
The Coriolis effect is caused by the rotation of the earth around its own axis.
Explanation:
The Coriolis effect arises from the fact that different latitudes of the earth's surface rotate at different speeds. The path of wind on earth is deflected by the Coriolis effect. As things move over the earth, they meet different speed areas, which causes the Coriolis Effect to divert their route.
Thus, The Coriolis effect is caused by the rotation of the earth around its own axis.
Answer:
The rock cycle and plate tectonics cause Earth's rocks to break down over time and they are recycled through natural processes.
Explanation:
Rock cycle(Attachment-1)
Answer is: mass of calcium hydroxide is 46.98 grams.
Balanced chemical reaction: CaO + H₂O → Ca(OH)₂.
m(CaO) = 35.55 g.
n(CaO) = m(CaO) ÷ M(CaO).
n(CaO) = 35.55 g ÷ 56 g/mol.
n(CaO) = 0.634 mol; limiting reactant.
m(H₂O) = 125 mL · 1.000 g/mL.
m(H₂O) = 125 g.
n(H₂O) = 125 g ÷ 18 g/mol.
n(H₂O) = 6.94 mol.
From chemical reaction: n(CaO) : n(Ca(OH)₂) = 1 : 1.
n(Ca(OH)₂) = 0.634 mol.
m(Ca(OH)₂) = 0.634 mol · 74.1 g/mol = 46.98 g.