A. lunar phases result from the changing lunar mass. Let me know if this helped.
Answer:
a = 0.8 m/s^2
Explanation:
Force equation: F = ma
F = ma -> a = F/m = 2.8*10^3 N / 3.5*10^3 kg = 0.8 m/s^2
Answer:
35.7kJ
Explanation:
we can calculate the amount of heat energy required , using this formula
Q = mcθ
where.
Q = heat energy (Joules, J)
m = mass of a substance (kg)
c = specific heat capacity (units
)
θ = change in temperature (Celcius,C or Kelvin K)
Assume Specific heat capacity (c) of water =
mass =0.1 kg

Answer:
Radii of Super giant > giant > main sequence star.
Explanation:
A star becomes a giant after all the hydrogen available for fusion, in a main sequence star is depleted and its outer shell of the star expands.
Super giant and giant stars are very large in size compared to a main sequence star. For example, if a giant star has 20 times the diameter of main sequence star, the super giant's diameter is almost 300 times or even more than a main sequence star.
Most of the stars are main sequence stars. After a star has spent a few million or even a few billion years as a main sequence star, it becomes a giant and a super giant star. These are the later stages of development of development of the main sequence star. Giant and super giant phase of a star's life is very short compared to the main sequence star.
From Ohm's law: R = V / I
Resistance = (voltage) / (current)
The first paragraph TELLS you that the current is always 0.5 A, and the table tells you the voltage across each piece of wire.
Again . . . <em>R = V / I</em>