Answer: D
Height of marble from ground
Explanation:
From the formula of kinetic energy and potential energy,
K.E = 1/2mv^2
While
P.E = mgh
From all the parameters given from the question. You can see that mass is constant, acceleration due to gravity is also constant.
Independent variable must be a value that can varies.
Since Jack rolled a marble down a ramp and recorded the potential energy and kinetic energy of the marble at different positions on the ramp to see the effects on both energies.
This different position must be the height which will produce an effect on the potential and kinetic energy of the marble.
Independent variable always provides an effect for dependent variable. Which are kinetic energy and potential energy in this case.
Height of marble from ground is the right answer.
Scientific knowledge is based upon observation, and it is supplemented by experimentation.<span> Scientific research follows the scientific method, a four-step process that guides scientists in the accumulation of knowledge.</span>
Answer:
Just as distance and displacement have distinctly different meanings (despite their similarities), so do speed and velocity. Speed is a scalar quantity that refers to "how fast an object is moving." Speed can be thought of as the rate at which an object covers distance. A fast-moving object has a high speed and covers a relatively large distance in a short amount of time. Contrast this to a slow-moving object that has a low speed; it covers a relatively small amount of distance in the same amount of time. An object with no movement at all has a zero speed.
A I think because sublimation is when something skips melting and goes directly to vapor
Answer:
K_{total} = 19.4 J
Explanation:
The total kinetic energy that is formed by the linear part and the rotational part is requested

let's look for each energy
linear
= ½ m v²
rotation
= ½ I w²
the moment of inertia of a solid sphere is
I = 2/5 m r²
we substitute
= ½ mv² + ½ I w²
angular and linear velocity are related
v = w r
we substitute
K_{total} = ½ m w² r² + ½ (2/5 m r²) w²
K_{total} = m w² r² (½ + 1/5)
K_{total} =
m w² r²
let's calculate
K_{total} =
6.40 16.0² 0.130²
K_{total} = 19.4 J