Answer:
Explanation:
3.4 m/s due North, -1.1 m/s due East
Answer:
We show added energy to a system as +Q or -W
Explanation:
The first law of thermodynamics states that, in an isolated system, energy can neither be created nor be destroyed;
Energy is added to the internal energy of a system as either work energy or heat energy as follows;
ΔU = Q - W
Therefore, when energy is added as heat energy to a system, we show the energy as positive Q (+Q), when energy is added to the system in the form of work, we show the energy as minus W (-W).
<span>The contact force that acts on objects in a liquid or gas and allows objects to float is called </span>Buoyancy.
Answer:
Radius=15.773 m
Explanation:
Given data
v=29.5 km/h=8.2 m/s
μs=0.435
To find
Radius R
Solution
The acceleration is a centripetal acceleration which is experienced by the bicycle given by

This acceleration is only due to static force which given as

The maximum value of the static force is given as

where
FN is normal force equal to mass*gravity
Therefore when the car is on the verge of sliding

Therefore the minimum radius should be found by the bicycle move without sliding
So
