Considering ideal gas:
PV= RTn
T= 25.2°C = 298.2 K
P1= 637 torr = 0.8382 atm
V1= 536 mL = 0.536 L
:. R=0.082 atm.L/K.mol
:. n= (P1V1)/(RT) = ((0.8382 atm) x (0.536 L))/
((0.082 atmL/Kmol) x (298.2K))
:. n= O.0184 mol
Then,
P2= 712 torr = 0.936842 atm
V2 = RTn/P2 = [(0.082atmL/
Kmol) x (298.2K) x (0.0184mol) ]/(0.936842atm)
:.V2 = 0.4796 L
OR
V2 = 479.6 ml
Water containing carbonic acid and calcium
In normal conditions, warm water does "pile up" in the" Western Pacific Ocean.
Answer:
By heating the mixture to maximum boiling point and then the solution is distilled at a constant temperature without having a change in composition.
Explanation:
An azeotropic mixture is also called a constant boiling mixture and it is a mixture of two or more liquids whose proportions cannot be altered by simple distillation due to the fact that when an azeotropic mixture is boiled, the vapor has the same proportions of constituents as the unboiled mixture.
Now, maximum boiling azeotropic mixture are the solutions with negative deviations that have an intermediate composition for which the vapor pressure of the solution is minimum and as a result, the boiling point is maximum. At that point, the solution will distill at a constant temperature without having a change in composition.