What question? Lhh this is hilarious.
Answer:
This can be solved using Dalton's Law of Partial pressures. This law states that the total pressure exerted by a gas mixture is equal to the sum of the partial pressure of each gas in the mixture as if it exist alone in a container. In order to solve, we need the partial pressures of the gases given. Calculations are as follows:
Explanation:
P = 3.00 atm + 2.80 atm + 0.25 atm + 0.15 atm
P = 6.8 atm
3.5 atm = x (6.8 atm)
x = 0.51
Answer:25,06 kJ of energy must be added to a 75 g block of ice.
ΔHfusion(H₂O) = 6,01 kJ/mol.
T(H₂O) = 0°C.
m(H₂O) = 75 g.
n(H₂O) = m(H₂O) ÷ M(H₂O).
n(H₂O) = 75 g ÷ 18 g/mol.
n(H₂O) = 4,17 mol.
Q = ΔHfusion(H₂O) · n(H₂O)
Q = 6,01 kJ/mol · 4,17 mol
Q = 25,06 kJ.
Explanation:
Answer:
300000Pa or 3×10^5 Pa
Explanation:
Since the problem involves only two parameters of volume and pressure, the formula for Boyle's law is suitably used.
Using Boyle's law
P1V1 = P2V2
P1 is the initial pressure = 1.5×10^5Pa
V1 is the initial volume = 0.08m3
P2 is the final pressure (required)
V2 is the final volume = 0.04 m3
From the formula, P2 = P1V1/V2
P2 = 1.5×10^5 × 0.08 ÷ 0.04
= 300000Pa or 3×10^5 Pa.